QCD jets in heavy ion collisions: new approaches

Peter Jacobs Lawrence Berkeley National Laboratory

STAR @ RHIC

ALICE @ LHC

Modern jet reconstruction algorithms

- Cone algorithms
 - Mid Point Cone (merging + splitting)
 - SISCone (seedless, infra-red safe)
- Sequential recombination algorithms
 - k_T
 - anti-k_T
 - Cambridge/ Aachen
- Algorithms differ in recombination metric:
 - → different ordering of recombination
 - → different event background sensitivities

What everyone now uses: FastJet (M. Cacciari, G. Salam, G. Soyez JHEP 0804:005 (2008))

t

Jet production in proton-proton collisions

Good agreement with pQCD @ NLO over a broad kinematic range

Jets in heavy ion collisions

Controlled "beams" with well-calibrated intensity

Final-state interactions with colored matter are calculable

"Jet quenching": quasi-tomographic probe of the Quark-Gluon Plasma

Jet quenching in QCD

collisional and radiative energy loss

Probability distribution of
$$k_{\perp}$$

$$P\left(k_{\perp}\right) = \int d^{2}x_{\perp}e^{-ik_{\perp}\cdot x_{\perp}}W_{R}\left(x_{\perp}\right)$$

 $W_R(x_{\perp})$ = expectation value of Wilson loop of spatial extent L (incorporates effects of the medium)

Second moment:

$$\hat{q} \equiv \frac{\left\langle k_{\perp}^2 \right\rangle}{L} = \frac{1}{L} \int \frac{d^2 k_{\perp}}{\left(2\pi\right)^2} k_{\perp}^2 P\left(k_{\perp}\right)$$

Total medium-induced jet energy loss (multiple soft scattering):

 $\Delta E_{med} \sim \alpha_s \hat{q} L^2$

Determination of \hat{q} : data + modeling

So why bother with fully reconstructed jets?

High p_T hadron suppression is a *disappearance* measurement: we largely observe the relics of those jets that have *not interacted*

We want a complete dynamical understanding of jet quenching:

• Jet energy is not "lost": where does it go?

Jets and jet quenching are partonic in nature

• Hadrons are an annoyance that may screen the essential physics

Jet quenching at the partonic level \rightarrow fully reconstructed jets

Jets in real heavy ion collisions

Visual identification of energetic jets above background is fairly easy

Much harder: accurate measurement of jet energy within finite cone

- Pb+Pb at LHC: on average over 100 GeV of uncorrelated background energy in cone R=0.4
- Uncorrelated background has complex structure, including multiple overlapping jets at all momentum scales

Rethink the problem: general requirements for heavy ion jet measurements

Simple and transparent selection of jet population: what biases are we imposing?

Correction of jet distributions to particle level for all background and instrumental effects ("unfolding")

→ Direct comparison to theory (no requirement to model background or instrumental effects)

Same algorithms and approach at both RHIC and LHC

→ well-controlled over the full jet kinematic range (p_T^{jet} > ~20 GeV)
→ energy evolution of quenching

Jets in Heavy Ion Collisions: STAR/ALICE approach

Assignment of any given track or calorimeter cell to either background or jet signal is not meaningful on an event-wise basis

Only ensemble-averaged distributions of backgroundcorrected signal are meaningful

→No jet selection/rejection based on backgroundcorrected jet energy (contrast ATLAS/CMS)

Instrumentation:

- Measurements based on EM calorimetry and tracking (no hadronic calorimetry: contrast ATLAS/CMS)
 - Why? Infrared safety:

 \rightarrow can measure individual jet consituents down to $p_T \sim 200$ MeV (tracks, EMCal)

- Same approach for STAR@RHIC and ALICE@LHC
- Collinear safety see later

Background density estimate

For each event:

- Run jet finder, collect all jet candidates
- Tabulate jet energy $p_{T,i}^{jet}$ and area A_i^{jet}
- Event-wide median energy density:

$$\rho = \text{median} \left\{ \frac{p_{T,i}^{\text{jet}}}{A_i^{\text{jet}}} \right\}$$

Jet candidate p_T corrected event-wise for median background density:

~half the jet population has $p_T^{<corr>} < 0$

- Not interpretable as physical jets
- But we do not reject this component explicitly by a cut in $p_T^{<corr>}$:
 - Contains crucial information about background or "combinatorial" jets
 - Rejected at later step by imposition of a specific (transparent) bias on candidates

True and measured jet spectra

ATLAS/CMS algorithm:

- reject jet candidates based on $p_T^{<corr>}$
- Correct for missing yield by simulation

STAR/ALICE:

- keep entire $p_T^{< corr>}$ distribution
- Reject background based on other observables

Analysis steps:

- 1. Isolate the real hard jet component and suppress combinatorial component
- 2. "Unfold" the effects of energy smearing on the hard jet component

Inclusive jet spectrum: isolation of hard jet component

G. De Barros et al., arXiv:1208.1518

Require leading hadron of each jet candidate to be above p_T threshold

- Imposition of momentum scale discriminating hard from non-hard jets
- Infrared-safe: large fraction of jet energy can still be carried by very soft radiation (down to ~200 MeV)
- Collinear-unsafe: minimize p_T cut and vary it to assess its effect

- Proof of principle: quasi-inclusive jet spectra can be measured with wellcontrolled systematics over a broad kinematic range at both RHIC and LHC
 - In progress: full jets (STAR), larger R at both energies, kinematic reach,...
- Effect of leading hadron bias is visible

Inclusive jets at RHIC: compare Au+Au and p+p

Ratio of heavy ion jet yield to p+p jet cross section

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$

p+p spectrum with leading hadron bias

Bias persists to \sim few times hadron p_T threshold

Bias in Au+Au not markedly different than in p+p →Vacuum-like jets?

7/25/2014

INFN Workshop: Heavy Ion

Inclusive jet suppression: RHIC vs LHC

Markedly larger suppression of inclusive jet yield at LHC than at RHIC

Hadron vs jet suppression at RHIC

Ratio of heavy ion jet yield to p+p jet cross section

Jets are markedly less suppressed than hadrons at RHIC

- Contrast LHC, where jet and hadron suppression are similar
 - →Less out-of-cone radiation at RHIC?

Result is suggestive; improved systematics and kinematic reach in progress 7/2 Next step: comparison to theory calculations

Jet RAA at RHIC and LHC: predictions

Casalderrey-Solana et al. arXiv:1405.3864

And now for something completely different: hadron+jet correlations

Semi-inclusive yield of jets recoiling from a high p_T hadron trigger

 $p_T^{\text{corr}} < 0$:

- Expectation: dominated by combinatorial (noise) jets
 - Observation: distr. uncorrelated with p_T^{trigger}

p_T^{corr} large and positive:

- Expectation: hard recoil jets from true coincidences
- Observation: distr. strongly correlated with $p_T^{trigger} \checkmark$

h+jet: Δ_{Recoil}

Ensemble-averaged analysis: no rejection of jet candidates on a jet-by-jet basis

- jet measurement is collinear-safe with low IR cutoff (0.2 GeV/c)
- directly comparable to pQCD calculations (vacuum and quenched)

But there is a price: this is the *evolution* of the recoil jet population with variation in p_T^{trig} 7/25/2014INFN Workshop: Heavy Ion Jets24

h+jet in p+p and Pb+Pb: jet broadening due to quenching?

 $\Delta_{\text{Recoil}}(\text{R=0.2})/\Delta_{\text{Recoil}}(\text{R=0.5})$ ∆_{Recoil}(R=0.2)/∆_{Recoil}(R=0.5) ALICE data Shape uncertainty Correlated uncertainty PYTHIA Perugia:Tune 0.10 &11 adron Trigg TT[20,50]-[8,9] p_-const>0.15 GeV/c anti-k_ 0.2 Pb-Pb \sqrt{s_NN} = 2.76 TeV 0-10% 0<mark>0</mark> 10 20 30 80 90 100 60 70 40 50 p^{ch}_{T,jet}(GeV/c)

Ratio of differential recoil yields R=0.2/R=0.5

Compare ratios for central Pb+Pb and p+p

No significant evidence of jet broadening due to quenching within R=0.5

Vacuum reference: NLO vs MC shower

 $\Delta_{\text{Recoil}}(\text{R=0.2})/\Delta_{\text{Recoil}}(\text{R=0.5})$

NLO: D. de Florian arXiv:0904.4402

∆_{Recoil}(R=0.2)/∆_{Recoil}(R=0.4)

MC shower and NLO differ

Compare ALICE p+p@7 TeV (not shown): MC shower strongly favored

Important lesson for jet quenching via pQCD@NLO

7/25/2014

Recoil yield suppression: ΔI_{AA}

 $\Delta I_{AA} = \frac{\Delta_{Recoil}^{PbPb}}{\Delta_{Pcovil}^{pp}}$

pp reference: PYTHIA Perugia 10

Compare to quenching MC: JEWEL

shop: Heavy Ion Jets

Large-angle scattering off the QGP

d'Eramo et al, arXiv:1211.1922

Discrete scattering centers or effectively continuous medium?

What are the quasi-particles? Weak coupling: pQCD: finite temperature plays the role of mass to generate large angle scattering

Strong coupling: AdS/CFT

Strong coupling: Gaussian distribution $Prob(k_{+}^{\min}, \infty)$

Weak coupling:

hard tail

 $\operatorname{Prob}\left(k_{\perp} > k_{\perp}^{min}\right)$

INFN Workshop: Heavy Ion Jets

h+jet @ LHC: medium-induced acoplanarity?

Compare CMS γ +jet/ALICE h+jet

Trigger-jet azimuthal correlation

Many differences: trigger, jet kinematics, jet selection bias, parton flavor bias,...

But still: distributions are similar

Difference in tails....?

h+jet correlations in STAR: 200 GeV Au+Au

Dataset: year 11 200 GeV Au+Au

• 70M 0-10%, 140M 60-80%

Charged hadron trigger: $9 < p_T < 19 \text{ GeV/c}$

Charged particle jets:

- Anti- $k_T R=0.3$
- Constituents: track $p_T > 0.2 \text{ GeV/c}$

Jet recoil azimuth: $|\phi - \pi| < \pi/4$

Semi-inclusive observable: recoil jets per trigger

$$\frac{1}{N_{trig}^{h}}\frac{dN_{jet}}{dp_{T,jet}} = \frac{1}{\sigma^{AA \to h+X}}\frac{d\sigma^{AA \to h+jet+X}}{dp_{T,jet}}$$

h+jet in STAR: data vs mixed events

Au+Au 0-10% Au+Au 60-80% 10 Au+Au @ 200 GeV, 60%-80% Au+Au @ 200 GeV, 0%-10% $9.0 < p_{-}^{trig} < 19.0 \text{ GeV/c}$ $9.0 < p_{-}^{trig} < 19.0 \text{ GeV/c}$ (1/N_{trig}) dN_{jets}/dp_T (GeV/c)⁻¹ 10 (1/N) dN dh_{fets} (GeV/c)⁻¹ jet____ > 0.15, R = 0.3 jet_rea > 0.15, R = 0.3 same event (SE) 10-2 same event (SE) 10⁻² -mixed event (ME) mixed event (ME) 10⁻³ 10-10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁶ 10⁵ 10³ SE/ME 10 SE/ME 10 10² 10 20 30 0 10 20 n recoil jet p_-pA (GeV/c) recoil jet p _- ρ A (GeV/c)

Mixed events give precise description of combinatorial background → Trigger-correlated jet distribution: subtract ME from data Compare ALICE h+jet: difference is absolute recoil yield (not trigger-differential) 7/25/2014 INFN Workshop: Heavy Ion Jets 34

Background-subtracted distributions

Compare to theory: should correct background-subtracted Au+Au distributions to the particle level

- · unfold for background fluctuations and detector effects
- but not yet done

Currently: compare Au+Au background-subtracted distributions to PYTHIA p+p smeared by background fluctuations and detector effects

Peripheral Au+Au: good agreement between data and PYTHIA Central Au+Au: strong suppression relative to PYTHIA

h+jet yield suppression: RHIC vs LHC

trigger

hadron

ALICE central Pb+Pb

Convert vertical suppression into horizontal shift: energy loss out of jet cone RHIC: $\Delta E \sim 5 \text{ GeV}$ \rightarrow "Chi-by-eye", needs to be done carefully LHC: $\Delta E \sim 7 \text{ GeV}$

h+jet azimuthal distributions: RHIC vs LHC

7/25/2014

•

STAR: A_J of biased jets

Full jets (with BEMC), Run 7 data

J. Putschke, QM2014

$$A_{J} = \frac{p_{{\rm T},1} - p_{{\rm T},2}}{p_{{\rm T},1} + p_{{\rm T},2}} \qquad p_{T} = p_{T}^{rec} - \rho \times A$$

A_i with constituent p_{T,cut}>0.2 GeV/c.

A_J of biased di-jets

J. Putschke, QM2014

My preferred observable for this analysis: ΔA_J

- $\Delta A_J = \text{shift in } A_J \text{ with constituent cut } 2 \text{ GeV} \rightarrow 0.2 \text{ GeV}$
- Calculated on a pair-wise basis
- Includes negative shifts, flipping of trigger/recoil assignment

∆A_J central Au+Au vs p+p: minor differences compared to overall shift
→ vacuum like jets? Bias towards tangential pairs?

How important is jet selection bias?

A_J: biased pairs

Little difference between central Au +Au vs p+p

- Vacuum-like: tangential pairs?
- Small if any out of cone radiation

h+jet: unbiased recoil

• large out-of-cone radiation

The bias matters...a lot!

ALICE: Λ/K_{S}^{0} ratio in jets

ALICE PhysLett B719 (2012) 29

Estimated jet yields in STAR for central Au+Au: current and future data

7/25/201

Run 11 Au+Au integrated luminosity $\sim 2.8/nb$

Estimate jet production yield (i.e. $R_{AA}=1$)

$$\sim T_{AA} \cdot \frac{d\sigma_{pp}^{jet}}{dp_T d\eta}$$

10% central Au+Au: ~2K jets with p_T >50 GeV (no quenching)

- Run 14 Au+Au @ 200: ~few /nb...?
- STAR BUR Run 16 Au+Au @ 200: 10/nb
 - → Central Au+Au: ~ 6K jets with $p_T > 50$ GeV

New idea I:

Jet Fragmentation Function Moments in Heavy Ion Collisions

Matteo Cacciari,^{1,2} Paloma Quiroga-Arias,¹ Gavin P. Salam^{3,4,1} and Gregory Soyez⁵

EPJ C73, 2319(2013)

Define event-averaged moments of hadron p_T distribution in jets:

$$M_N^{jet} = \frac{\sum_{i \in jet} (p_{T,i})^N}{(p_{T,jet})^N}$$

Moments are theoretically well-defined: DGLAP-like evolution

Heavy ion measurements: unfold bkgd fluctuations at the ensemble level

- in the same spirit as the STAR/ALICE approach to incl/semi-incl jet measurements
- systematically improvable precision

New idea II: intrinsic charm in jets D-meson fragmentation function:

Is this of interest in heavy ions?

• Perhaps: g->c+cbar may be a "direct messenger" from the parton shower

 \rightarrow even more ambitious: c+cbar correlations

- New vertex detectors are crucial (HFT, PHENIX VTX)
- Very luminosity-hungry: estimates TBD

7/25/2014

Outlook

Jet quenching is a rich and compelling problem in QCD

- Field-theoretical basis, many interesting theory approaches
- Experiment: challenging measurements but promising new ideas

We have developed new techniques for robust measurements of true jets (not an approximation) over the full kinematic range at both RHIC and LHC

- Clear connection to theory
- Extensions under discussion, e.g. into heavy flavor sector

There is much interesting jet physics still to do in heavy ion collisions:

• new tools enable the first rigorous jet measurements