
Lattice QCD simulations
using new high-performance

computing systems

Mario Schröck
for the Lattice QCD group @ RM3

!
Roma, 05/05/2014

Introducing myself
• 2004-2010: Diploma studies of Physics at Universität

Tübingen (Germany)

• 2009/2010: Diploma thesis at Institut für Theoretische Physik,
Universität Tübingen with Prof. H. Reinhardt:

"Coulomb Gauge Quark Propagator from Lattice Quantum
Chromodynamics"

• 2010-2013: Ph.D. thesis at Universität Graz (Austria), with  
Prof. C.B. Lang:

"Dynamical Chiral Symmetry Breaking and Confinement: Its
Interrelation and Effects on the Hadron Mass Spectrum”

• since 01/2014: postdoc INFN SUMA @ RM3

INFN SUMA grant

• The aim is the optimization and the porting of
codes for lattice QCD simulations on both existing
and new architectures for high-performance
computing included in the INFN program SUMA for
massive supercomputing

• http://web2.infn.it/SUMA

• Currently: adopting GPUs for large matrix
inversions in lattice QCD

http://web2.infn.it/SUMA

Motivation

• inclusion of disconnected quark loops in lattice QCD
requires ab initio the complete inversion of a rank ≳
one million matrix

• clever algorithms lower this to 100-1000 solutions per
gaugefield configuration

• costs of the inversions still highly dominate the post
gaugefield generation analysis

⇒ adopt modern hardware to accelerate the inversions!

128 6 Hadron spectroscopy

m nm n

Fig. 6.1. Connected (left-hand side plot) and disconnected (right-hand side plot)
pieces of a meson correlator

theorem (5.36) for each of the two flavors (compare also (5.54)). This step is
often referred to as fermion contraction.

The Dirac operators Du, Dd for u and d quark differ only by the value
of the mass parameter (compare (5.51)). Often the small difference between
the u and the d quark masses is ignored and one uses Du = Dd, i.e., exact
isospin symmetry. It is, however, important to keep in mind that also in this
case, only Grassmann variables with equal flavor can be contracted with each
other.

The result in the last line of (6.12) has a simple interpretation: The propa-
gator D−1

u (n|m) propagates a u quark from space–time point m to the point n,
while the propagator D−1

d (m|n) transports a d quark in the opposite direc-
tion. Such a contribution is referred to as connected piece and is depicted in
the left-hand side plot of Fig. 6.1. We remark that each of the individual lines
in this figure symbolizes a collection of fermion lines (cf. Fig. 5.1).

In the correlator of an iso-singlet operator OS = (uΓu + dΓd)/
√

2, such
as (6.6), also another type of contribution appears. The fermion contractions
for this correlator are obtained by following the same steps as in (6.12),

〈
OS(n)OS(m)

〉
F

= −1
2

tr
[
ΓD−1

u (n|m)ΓD−1
u (m|n)

]

+
1
2

tr
[
ΓD−1

u (n|n)
]

tr
[
ΓD−1

u (m|m)
]

(6.13)

+
1
2

tr
[
ΓD−1

u (n|n)
]

tr
[
ΓD−1

d (m|m)
]

+ u ↔ d .

The first type of contribution are the connected pieces we have already dis-
cussed. However, one also gets propagators D−1

u (n|n), D−1
u (m|m) which trans-

port a u quark from a space time-point back to the same point. Such terms
are called disconnected pieces and are depicted in the right-hand side plot of
Fig. 6.1. Numerically these contributions need more computational effort and
higher statistics than the connected parts and many studies avoid considering
such mesons or drop the disconnected pieces.

We remark that the interpolator OT,Iz=0 = (uΓu−dΓd)/
√

2 for the Iz = 0
component of the iso-triplet differs from the singlet interpolator only by a
relative minus sign between the u and the d terms (compare (6.5) and (6.6)).
The corresponding correlator is like in (6.13), but with a minus sign in the
third term. In the case of exact isospin symmetry, Du = Dd, the disconnected
pieces cancel. The resulting correlator is the same as for the other members

Motivation

[http://michaelgalloy.com]

http://michaelgalloy.com

The Programming Model
• Program is executed on

host system (CPU)

• host calls kernels that
run on the device (GPU)

• each kernel starts many
threads that perform the
same work on different
data, e.g., one thread
per lattice site

M. Schröck Multi-GPU Simulations in Lattice QCD

The CUDA Programming Model

• Program is executed on host system (CPU)

• host calls kernels that run on the device
(GPU)

• each kernel starts many threads that
perform the same work on different data

• e.g. one thread per lattice site

 Chapter 2: Programming Model

CUDA C Programming Guide Version 4.2 13

Serial code executes on the host while parallel code executes on the device.

Figure 2-3. Heterogeneous Programming

Device

Grid 0

Block (2, 1) Block (1, 1) Block (0, 1)

Block (2, 0) Block (1, 0) Block (0, 0)

Host

C Program
Sequential
Execution

 Serial code

 Parallel kernel
 Kernel0<<<>>>()

 Serial code

 Parallel kernel
 Kernel1<<<>>>()

Host

Device

Grid 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

© NVIDIA

Program
execution

Wednesday, December 19, 12

Code optimizations
• GPU kernels in lattice QCD are bandwidth bound:

transfer only 12 (or 8) parameters of each SU(3)
matrix and recalculate the matrix when needed
(virtually for free!)

• maximize memory throughput: reorder gaugefield/
spinorfields to allow coalesced memory accesses

• combine low precision arithmetic in the conjugate
gradient with high precision reliable updates

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda

• Effort started at Boston University in 2008, now in wide use as
the GPU backend for Chroma, MILC, and various other codes.

• Various solvers for several discretizations, including multi-GPU
support and domain-decomposed (Schwarz) preconditioners.

• Developers: Ron Babich (NVIDIA), Mike Clark (NVIDIA), Kip
Barros (LANL), Rich Brower (Boston University), Justin Foley
(University of Utah), Joel Giedt (Rensselaer Polytechnic
Institute), Steve Gottlieb (Indiana University), Bálint Joó (JLab),
Claudio Rebbi (Boston University), Guochun Shi (NCSA ->
Google), Alexei Strelchenko (FermiLab), Frank Winter (JLab)

Eurotech Eurora @ Cineca
EURORA characteristics

Model: Eurora prototype

Architecture: Linux Infiniband Cluster

Processors Type:

- Intel Xeon (Eight-Core SandyBridge) E5-
2658 2.10 GHz (Compute)

- Intel Xeon (Eight-Core SandyBridge) E5-
2687W 3.10 GHz (Compute)

- Intel Xeon (Esa-Core Westmere) E5645
2.4 GHz (Login)

Number of nodes: 64 Compute + 1 Login

Number of cores: 1024 (compute) + 12
(login)

Number of accelerators: 128 nVIDIA Tesla
K20 (Kepler)

RAM: 1.1 TB (16 GB/Compute node +
32GB/Fat node)

OS: RedHat CentOS release 6.3, 64 bit

4

Performance comparison
Fermi: IBM Blue Gene/Q!

• 10.240 nodes PowerA2
sockets @1.6GHz,  
16 cores each

• #15 of  
(Nov.’13)

Eurora: prototype!

• 64 nodes, two Intel Xeon
Sandybridge CPUs
and two NVIDIA K20s

• #4 of Little List  
(Nov.’13)

Performance comparison

Fermi!
• nissa code (DP/SP)
• 128 nodes (2048 cores)
• 0.009898 sec./iter.

Eurora!
• QUDA (DP/HP, 12 recon.)
• 1 node (2 GPUs)
• 0.017016 sec./iter.

32³ x 64 lattice: twisted mass inverter in double precision

Performance comparison

Fermi!
• nissa code (DP/SP)
• 128 nodes (2048 cores)
• 0.009898 sec./iter.

Eurora!
• QUDA (DP/HP, 12 recon.)
• 1 node (2 GPUs)
• 0.017016 sec./iter.

32³ x 64 lattice: twisted mass inverter in double precision

ratio = 0.58

Performance comparison

Fermi!
• nissa code (DP/SP)
• 128 nodes (2048 cores)
• 0.009898 sec./iter.

Eurora!
• QUDA (DP/HP, 12 recon.)
• 1 node (2 GPUs)
• 0.017016 sec./iter.

32³ x 64 lattice: twisted mass inverter in double precision

ratio = 0.58
75 Fermi nodes ~ 1 Eurora node
596 Fermi cores ~ 1 GPU

Multi-GPU on Eurora
• QUDA shown to scale up to O(100) GPUs
• in practice highly dependent on the lattice size
• hide inter GPU communication behind calculations

in the inner part of the domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 16

Su
st

ai
ne

d
TF

lo
ps

Number of GPUs

323 x 64d18
d12
d08
s18
s12
s08
h18
h12
h08

preliminary

twisted mass inverter

Status of the project

• some final steps in the integration of the QUDA
inverter into our code have to be completed

• then we will start to use the Eurora cluster for
production, in particular to study

isospin breaking effects in QCD+QED

nucleon sigma term

Outlook
• Amdahl’s law states that a program fraction P

subject to acceleration with the according program
part sped up by a factor S gains a total speedup
factor of

Accelerating QDP++/Chroma on GPUs Frank Winter

Figure 3: JIT control flow. The tree parser generates at runtime GPU code and a list of lattice
objects. The cache is queried for availability of all objects on the device. JIT compilation and
device execution is triggered accordingly or alternatively host execution.

cording program part sped up by a factor S gains a total speedup factor of

Stotal =
1

(1�P)+ P
S

. (3.1)

For a very high speedup factor S ! • the total speedup factor is limited by the fraction Stotal =

1/1�P. Fig. 1 shows Stotal over S for P = 0.8. To further increase Stotal one needs to increase P.

4. QDP++ Extensions for GPUs

To further increase P in case of Chroma one can either implement more hand-tuned versions
of non-kernel routines or target on the underlying library QDP++. Targeting on QDP++ by adding
design extensions for GPU support is advantageous since this approach results in a more general
solution. General in the sense that the user is not restricted to specific non-kernel routines.

4.1 Memory Management

The bandwidth between host and device memory domain represents a major bottleneck. Since
lattice objects are typically more often referenced than just once in a particular set of expressions
minimising these transfers can be accomplished by an implementation of a software cache con-
trolling the memory domain affiliation of individual lattice objects. Provided with enough device
memory re-referencing lattice objects does not trigger transferring them again.

4

Accelerating QDP++/Chroma on GPUs Frank Winter

(a) GeForce GTX 480, lattice size 163 ⇥ 32, k = 0.13420,
b = 5.20, (SP): Left bar: MI,SRC,SNK,HAD(CPU) Mid-
dle bar: MI(GPU), SRC,SNK,HAD(CPU) Right bar:
MI,SRC,SNK,HAD(GPU).

(b) Tesla C2070, lattice size 243 ⇥ 48, k = 0.13632, b =

5.29, (SP): Left bar: MI(GPU), SRC,SNK,HAD(CPU)
Right bar: MI,SRC,SNK,HAD(GPU).

Figure 4: Comparison of wall-clock execution times of Chroma reference runs. Source smearing
(SRC), Matrix inversion (MI), Sink smearing (SNK), Hadron spectrum (HAD).

Fig. 2 shows the functional principle. A pool manager allocates at program startup time a large
portion of the GPU memory and delegates control to the cache. Upon dynamic memory allocation
the caching algorithm spills if necessary the least recently used (LRU) object(s). This automates
the memory management and application codes, e.g. Chroma, build without changes to the code.

4.2 Just-in-Time Compilation

The expressions are not known at library development time. A dynamic code generator is
implemented using PETE’s user defined expression tree traversals (tree parser). Specialised leaf
functors generate GPU code for references to lattice objects and collect memory addresses of in-
volved lattice objects populating the parser list. Specialised actions for tree nodes then rebuild the
operations and the structure of the expression.

Fig. 3 shows the JIT compilation control flow. Upon expression evaluation the tree parser
generates GPU code for the expression and the parser list containing lattice objects. The cache
is queried for availability of the lattice objects on the device. In case all objects are cached, i.e.
available on the device, the availability of the CUDA kernel is queried via the dynamic linking
loader. If no CUDA kernel for the expression can be found JIT compilation is triggered using
NVIDIA’s FrontEnd++ and the resulting kernel is dynamically loaded. Then device execution is
started.

4.3 QUDA Integration

Special emphasis is put on the interoperability of the memory management via the LRU cache
and QUDA. QUDA makes use of CUDA’s API to allocate device memory. Call wrappers are in
place that redirect memory allocation calls to the device memory pool manager controlled by the
LRU cache. Fig. 2 shows the interoperability of QUDA with the device memory pool. QUDA

5

[F. Winter, Proc. LAT2011]

Outlook
• Amdahl’s law states that a program fraction P

subject to acceleration with the according program
part sped up by a factor S gains a total speedup
factor of

Accelerating QDP++/Chroma on GPUs Frank Winter

Figure 3: JIT control flow. The tree parser generates at runtime GPU code and a list of lattice
objects. The cache is queried for availability of all objects on the device. JIT compilation and
device execution is triggered accordingly or alternatively host execution.

cording program part sped up by a factor S gains a total speedup factor of

Stotal =
1

(1�P)+ P
S

. (3.1)

For a very high speedup factor S ! • the total speedup factor is limited by the fraction Stotal =

1/1�P. Fig. 1 shows Stotal over S for P = 0.8. To further increase Stotal one needs to increase P.

4. QDP++ Extensions for GPUs

To further increase P in case of Chroma one can either implement more hand-tuned versions
of non-kernel routines or target on the underlying library QDP++. Targeting on QDP++ by adding
design extensions for GPU support is advantageous since this approach results in a more general
solution. General in the sense that the user is not restricted to specific non-kernel routines.

4.1 Memory Management

The bandwidth between host and device memory domain represents a major bottleneck. Since
lattice objects are typically more often referenced than just once in a particular set of expressions
minimising these transfers can be accomplished by an implementation of a software cache con-
trolling the memory domain affiliation of individual lattice objects. Provided with enough device
memory re-referencing lattice objects does not trigger transferring them again.

4

Accelerating QDP++/Chroma on GPUs Frank Winter

(a) GeForce GTX 480, lattice size 163 ⇥ 32, k = 0.13420,
b = 5.20, (SP): Left bar: MI,SRC,SNK,HAD(CPU) Mid-
dle bar: MI(GPU), SRC,SNK,HAD(CPU) Right bar:
MI,SRC,SNK,HAD(GPU).

(b) Tesla C2070, lattice size 243 ⇥ 48, k = 0.13632, b =

5.29, (SP): Left bar: MI(GPU), SRC,SNK,HAD(CPU)
Right bar: MI,SRC,SNK,HAD(GPU).

Figure 4: Comparison of wall-clock execution times of Chroma reference runs. Source smearing
(SRC), Matrix inversion (MI), Sink smearing (SNK), Hadron spectrum (HAD).

Fig. 2 shows the functional principle. A pool manager allocates at program startup time a large
portion of the GPU memory and delegates control to the cache. Upon dynamic memory allocation
the caching algorithm spills if necessary the least recently used (LRU) object(s). This automates
the memory management and application codes, e.g. Chroma, build without changes to the code.

4.2 Just-in-Time Compilation

The expressions are not known at library development time. A dynamic code generator is
implemented using PETE’s user defined expression tree traversals (tree parser). Specialised leaf
functors generate GPU code for references to lattice objects and collect memory addresses of in-
volved lattice objects populating the parser list. Specialised actions for tree nodes then rebuild the
operations and the structure of the expression.

Fig. 3 shows the JIT compilation control flow. Upon expression evaluation the tree parser
generates GPU code for the expression and the parser list containing lattice objects. The cache
is queried for availability of the lattice objects on the device. In case all objects are cached, i.e.
available on the device, the availability of the CUDA kernel is queried via the dynamic linking
loader. If no CUDA kernel for the expression can be found JIT compilation is triggered using
NVIDIA’s FrontEnd++ and the resulting kernel is dynamically loaded. Then device execution is
started.

4.3 QUDA Integration

Special emphasis is put on the interoperability of the memory management via the LRU cache
and QUDA. QUDA makes use of CUDA’s API to allocate device memory. Call wrappers are in
place that redirect memory allocation calls to the device memory pool manager controlled by the
LRU cache. Fig. 2 shows the interoperability of QUDA with the device memory pool. QUDA

5

[F. Winter, Proc. LAT2011]

perform smearing
and contraction

on the GPU as well

