ATLAS MicroMegas

The New Small Wheel upgrade for LHC Phase 1

New Small Whell - Motivations

At 7x10³⁴ (luminosity of phase2) the rate estimate is (safety factor 1.5) 14 kHz/cm² (>5 MHz/MDTtube) 2) **TRIGGER** L1 muon trigger rate in the endcap (based on Big Wheel) dominated by fake triggers.

At 3.10^{34} cm⁻²s⁻¹ rate L1MU20 (p_T>20 GeV) ~60 kHz exceed the available bandwidth for L1Mu (~15kHz)

NSW

RM3 contribution

New Small Wheel – Layout

The present Small Wheel defines the basic layout and envelopes

- 16 sectors per wheel (8 Large 8 Small)
- 2 detector technologies: MicroMegas and sTGC

MM Large Sector

MM Small Sector

16 detector layers per wheel :

- 2 Multilayers per sector
- Each ML: 4 MM and 4 sTGC planes

- sTGC (small strip TGC) primary trigger detector
- Bunch iD with good timing resolution
- Good online space resolution for NSW track vector with <1 mrad angle resolution

MicroMegas (MM) primary precision tracker

- Good Space resolution ~100 µm, independent of angle
- Good track separation (0.5 mm readout granularity)
- Provide also online segments for trigger

F.Petrucci –

ATLAS MicroMegas

5 June 2014

- Work together to make a robust detector for the high rate region of very limited access
- The NSW will operate from <u>2017 until 2032</u> → ROBUSTNESS and REDUNDANCY

Micromegas Tecnology

- MM belongs to the family of Micro Pattern Gaseous Detectors (MPGDs)
- Space resolution < 100 µm independent of track incidence angle
- Good track separation due to small 0.4 mm readout granularity (strips)
- Excellent high rate capability due to small gas amplification region and small space charge effects

Micromegas Construction - Mechanical prototypes

Mechanical Prototypes - Recent activity

NSW

- Construction of 4 modules Mechanical Prototypes is CONCLUDED (according to old segmentation): INFN PV, INFN RM, Saclay, LMU-Germany
- Construction of single wedge full size mech. Protototype CONCLUDED: CERN
 Ongoing measurements:
- Thermo-mechanical deformations
- Mesh tension and gas overpressure induced deformations

Current measurements being carried on in Freiburg

- Assembly prototypes into 2 dummy sectors, with dummy counter weights as 2nd wedge, to study mechanical deformation and stress
- Measurements to be done at Freiburg (4 modules) and at CERN (full wedge)
- Validation of simulation of Thermo-mechanical deformations
- Crucial input to settle In-plane alignment needs
- Assess and define method to attach modules to sector structure – glueing, kinematic mounting,

M4 Saclay M3 INFN Pavia M2 INFN Roma M1 LMU

Mechanical prototypes (based on old segmentation)

ROMA TRE

F.Petrucci – ATLAS MicroMegas -5 June 2014

9

Functional prototypes

Ongoing construction of functional Multiplets in Frascati (780x730 mm²) and Saclay (600x1000 mm²)

The MSW Project

- One CERN/Mainz prototype (Micromegas Small Whell module – MSW) will be installed in ATLAS on the Small Wheel to operate during Run2 in real conditions in (*Installation July 2014*)
 - -- Dimensions 1.2 x 0.5 m² (to fit upper half of CSC)
 - -- Four layers (quadruplet) 2 eta 2 stereo
 - -- strip pitch 0.425 mm, 1024 strips/layer
 - -- PCB Production as close as possible to final production

Goal is to integrate the data into the ATLAS data stream.

Major Milestones

- The schedule is determined by the **installation in ATLAS in mid-2018**.
- Before the installation, it is planned that the completed wheels are fully <u>tested</u> on surface during 2017 for about one year.
- In order to match the above schedule, the production of the chamber multiplets, which is expected to take at maximum two years, should <u>start in 2015</u>.
- Year 2014 will be devoted to the production of **module-0** and its qualification. Finalization of the chamber construction procedure, preparation of the tooling and infrastructure for qualification should proceed in parallel during this period.

Milestone	Due
Submission of VMM ASIC prototype 1 Submission of VMM ASIC prototype 2 Submission of final FE ASIC Construction of module-0 Start chambers production Start assembly of sectors NSW Assembly	Beginning 2012 (done) January 2014 (done) 2015 End of 2014 March 2015 End 2015 Mid-End 2016
Installation	Mid 2018

The MSW is a pre-series quadruplet for the NSW MMs

- It will be operational in 2015-2018 under realistic background conditions.
- Test for the integration of the MMs into the forward muon tracking system

Performance studies

• Initiate a process of MM Performance Review, implying test-beam re-analysis, simulation, software development, algorithms improvements

- Spatial resolution<100 μm in the whole angular range of the NSW
- Studies ongoing for possible improvements

Test-Beam Plans:

- 6-12 August (1 week) at PS T9 line: test of VMM2 chip on small or large MM prototypes
- 1-7 October (1 week) at PS T10 line: test of VMM2 chip on small or large MM prototypes
- 20 Oct. 2 Nov. (2 week) at SPS H6 line (to share with pixels): test of VMM2 on small or large MM prototypes
- 1 week (minimum) between 26 Nov. And 14 Dec. At SPS H4 line: test in Goliath magnet

RM3 contribution

We are involved in different aspects of the ATLAS NSW MM project since the beginning:

- Active in preliminary studies, performance measurements, layout definition $\rightarrow \underline{TDR}$
- Mauro is the deputy NSW project leader (MicroMegas Detector Working Group)
- We are contributing to the **analysis of the performance** and to the coming **test beam activities**
- We are involved in the definition of the construction procedures:
 - mesh stretching, gluing, ...
 - assemply tools
- We will contribute to the detector construction and test:
 - all the meshes will be stretched in Roma Tre and then transported to the assembly site (Frascati)
 - we will participate in the assembly and in the test at the production site

ROMA TRE

NSW

RM3 contribution

Set-up at Roma Tre

- The mesh is a crucial element of Micromegas chambers.
- It divides drift gap from amplification gap. The distance of 128 µm between mesh and readout plane has to be more accurate as possibile, for a uniform amplification.
- It is necessary to stretch the mesh and glue it on the drift pannel in way that tension will be costant during all life of ATLAS.
- A mesh stretching tooling is being designed and built in Roma Tre.
- A 1m x 1m prototype is already operative.

Mesh tensioning and tests

SEFAR Tensocheck 100

Tension values

Map of tensions of the stretched mesh

Final mesh stretching tool and transport

Sizes of the MM module that will be realized in Italy

A new stretching tool **2.5 m x 1.5 m** is currently being designed Prototype 1m x 1m transfer frame: two frames screwed together, the same principle of the clamps is used

Advantage: reusable several times

 More than 10 years ago we started contributing to the construction and test of the MDT precision chambers for the Barrel Muon Spectrometer; now we are in the new NSW phase...

RM3 contribution

NSW

- Overall, the construction of the MicroMegas for the NSW is less demanding (32 4-layer chambers will be built in Italy)
- The amount of work to be done in our lab is limited: we should stretch the mesh for all of them (128 meshes).

• Spaces:

- the stretching tool will be 2.5 m x 1.5 m. We need room for that (plus some temporary storage area + other service desks).
- Although the meshes will be cleaned before assembly, our lab should be clean *enough* (a clean room?)
- Manpower:
- in 2015-2016 we need the help of the technicians (one more person is needed!)

Outlook

Backup slides

Micromegas Mechanical Requirements

ATLAS UPGRADES

Cost of the Project

Item	CORE (kCHF)	Possible addition	Common item	2013	2014	CORE 2015	2016	2017	2018
sTGC detector	2,419			385	962	874	173	25	
Alignment system	610	132		10	400	2,070	289 474	77	
Mechanics, integration	150 1 049		1,558			60 682	60 367	30	
FE electronics	2,206				149	829	1,227		
DAQ(*), configuration DCS system	267 87				32		19 55	248	
HV, LV	1,600					500	500	600	
On-detector services	181			_		60	100	21	
Total	11,373	132	1,558	400	$1,\!573$	5,134	3,265	1,001	

The cost of the project is planned to be covered by all institutions participating the NSW project

The commitments of each funding agencies will be formulated in the MoU of NSW construction (currently being finalized)

CERN-LHCC-2013-006

TDR

PROSPETTIVE DI FISICA A LHC

- Branching ratios (molti canali di decadimento) possibili...) in particolare per il settore fermionico (e quindi per i fermioni piu' pesanti accessibili: τ e b)
- Higgs self-coupling (e.g. $HH \rightarrow bb\gamma\gamma$)
- ttH; $H \rightarrow \mu\mu$ per misure di coupling a t e μ
- Inoltre potremmo estendere ricerche BSM (in particolare SUSY) grazie ai ~3000 fb⁻¹ previsti, raddoppiando i limiti di massa attuali
- Per poter far questo (in particolare per m_{Higgs} = 125 GeV) bisogna mantenere (o migliorare) le performance di ATLAS per tutte le osservabili importanti (p, E, E_{T-miss}, identificazioni e vertexing) e per le soglie di triger nelle condizioni di maggior luminosita' e pile-up

- Gli upgrade dei rivelatori sono motivati dal mantenimento e/o miglioramento delle performance con l'aumento della luminosita' istantanea:
 - da 1x10³⁴ a >5x10³⁴ cm⁻²s⁻¹
- Il numero elevato di interazioni per bunch-crossing, pile-up fino a
 <μ>~200 rappresenta la sfida principale per la ridefinizione del trigger (hardware – Level1 – e software – High Level Trigger) ai fini di mantenere la sensitivita' ai pochi eventi interessanti

- L'alto pile-up puo' saturare read-out links (alta occupancy)
- Alcuni rivelatori (specialmente quelli vicino alla beam-pipe) sono danneggiati dall'accumulo di dosi elevate. Fluence fino a 10¹⁶ n_{eq}/cm²

GLI UPGRADE DI FASE 0 (2013-2014)

- New Insertable pixel b-layer (IBL)
- New AI beam pipe
- New pixel services
- New evaporative cooling plant
- Consolidation of detector elements (e.g. calorimeter power supplies)
- Add specific neutron shielding
- Finish installation of EE muon chambers staged in 2003
- Upgrade magnet cryogenics

- rivelatore, due "upgrade" principali:
 - → PIXEL: Insertable B-Layer (prossima)

slide)

Completamento Installazione delle camere MDT EE (Endcap-Extension) nella regione 1.0<n<1.3

MECHANICAL PROTOTYPES – READY FOR **MEASUREMENTS IN FREIBURG**

MECHANICAL MEASUREMENTS IN FREIBURG

Mechanical prototypes are currently being assembled on a spacer frame and measured with the Freiburg CMM machine

Main purpose of the measurements

- Individual module measurements in vertical position
- Assembly/Fixation on spacer and deformation studies •
- Induce thermal gradients and studty thermo-mechanical deformations

Petrucc ⊳ S MicroMegas

FULL WEDGE MECHANICAL PROTOTYPES BY CERN

27

MECHANICAL PROTOTYPES – SOME EXAMPLES

M2 INFN trapezoidal shape 1628x916mm² – "Vacuum bag technique"

- All 5 panels built____
- Quadruplet is completed PANELS PLANARITY : Average $\sigma_{fit} \approx 30 \ \mu m$ PANELS THICKNESS: average -15 μm ; RMS 17 μm Measurements compared with two different techniques Measurements on QUADRUPLETS will follow

Compare results obtained with a Coordinate Measuring Machine (CMM) and with a Laser Tracker: Consistent ! TLAS

MicroMegas

- 5 June

MicroMegas Chamber Construction

Read-out Boards

Currently finalizing requirements – Evaluating companies (ELTOS, ELVIA, Triangle Lab) – Procurement and QA/QC by CERN

Resistive foils:

- 2 options: sputtering or screen printing
- Promising results from Japan (sputtering)

F.Petrucci -ATLAS MicroMegas ъ June 2014

30

Challenge:

- Find track segments within 1000ns, incl 500ns fiber propagation time, to confirm segments found in downstream "Big Wheels".
- Micromegas: 2M 0.5mm strips
- sTGC: 300K chan: strips (3.2mm), wires, pads

Micromegas – sTGC commonalities

- Same FE ASIC, on-chamber and off-chamber readout
- Separate segment formation for trigger, but same final FPGA-based trigger processor (one ATCA crate per Endcap)
 - sTGC uses pads to select strips to read out for centroid finder
 - MM uses first strip hit in group of 64 to give track position

VMM ASICS

- Highly programmable ASIC provides both precision measurement and trigger primitives for both Detectors
- First version, fully functional, 64-channel analog front ends successfully fabricated in 2012
- Second version including ADC, simultaneous read/write was submitted in a custom MOSIS run last week
- About 450 samples expected in 10-12 weeks
- Nearly final version, missing SEU mitigation of config. register and ATLAS specific readout handshake

Companion ASICs for TTC distrib, clk gen, pgmable delays, etc.

- sTGC trigger data serializer for pads and strips
- MM address of 1st hit encoder for trigger
- Readout: VMM to E-link inputs to GBT

ANALYSIS DEVELOPMENTS – AN EXAMPLE: THE μ TPC METHOD

Exploit time information for μ TPC reconstruction

The observed bias in the reconstructed track angle, stronger for smaller chamber plane inclination is due to:

- tracklet edge effects (first/last strip and finite strip pitch
- induced charge from the neighbouring strips.

This has been studied with a circuit simulation and results are in good agreement with data (good understanding of the effect)

Ongoing studies:

- Characterization of hits affected by induced charge
- charge Re-weight affected hit and/or shift position

Preliminary studies are promising \rightarrow can improve μ TPC resolution at small angles

