
UI Interface
 and visualization
2nd GEANT4 international school and ROOT analysis concepts
November 17-21, Catania

1

Friday, November 21, 14

It can be done in three different ways:
Steering the simulation

✓everything hard-coded in the C++ source (also the number of events
to be shot). You need to re-compile for any change (not very smart,
actually!)

✓batch session (via an ASCII macro)

✓commands captured from an interactive session

Friday, November 21, 14

In batch mode:

•read command from command line
 In the main():

G4UImanager* UI = G4UImanager::GetUIpointer();
G4String command = “/control/execute”;
G4String fileName = argv[1];
UI->ApplyCommand(command+fileName);

Takes the first argument
after the executable as

the macro name and runs it

•Your executable can be run as

./myExecutable mymacro.mac

•To execute a macro interactively:

/control/execute mymacro.mac

Friday, November 21, 14

Interactive mode

• All of them must be derived from the abstract class G4UIsession

• You can decide the interface to use

 In the main(), according to the computer environments, construct a
G4UIsession concrete class provided by Geant4 and invoke its
SessionStart() method

• Geant4 provides several interfaces for various (G)UI:
 G4UIterminal,G4UItcsh, G4UIGAG, G4UIXm, G4UIQt

G4UIsession* session=0;

if (argc==1)
 {
 session = new G4UIterminal;

 session->SessionStart();
 delete session;
 }

For istance:

 Or (better) use the G4UIExecutive

The G4UIExecutive takes care of selecting the most appropriate UI
given the system environment

Friday, November 21, 14

An example of interactive session – let
G4UIExecutive choose

For instance: in the main()

 G4UIExecutive* session =
 new G4UIExecutive(argc, argv);

if (argc==1)
 {
 session->SessionStart();

 delete session;

Create an instance of the G4UIExecutive

If there are no arguments after
the executable, starts an

interactive session

Start the session
gives the prompt

Don’t forget to delete it

Friday, November 21, 14

Built-in user commands

Geant4 provides a number of general-purpose user interface commands
which can be used:
✓interactively via a (G)UI
 For istance:

/run/setCut [value] [unit]
/run/beamOn 100

✓in a macro file

Within C++ code using the ApplyCommand() method of G4UImanager

G4UImanager::GetUIpointer()->ApplyCommand(“/run/setCut 1 cm”);

A complete list of built-in commands is available in the Geant4 Application
Developers Guide, Chapter 7.1

Friday, November 21, 14

User-defined commands

 If built-in commands are not enough, you can make your
own

 Geant4 provides several command classes, all derived
from G4UIcommand, according to the type of argument
they take

G4UIcmdWithoutParameter
G4UIcmdWithABool
G4UIcmdWithADouble
G4UIcmdWithADoubleAndUnit
...

Friday, November 21, 14

User-defined commands
Commands have to be defined in messenger classes, that inherit
from G4UImessenger abstract class

•Define the command in the constructor:

 G4UIcmdWithADoubleAndUnit* fSizeCmd =
 new G4UIcmdWithADoubleAndUnit
 ("/window/size",this);

fSizeCmd->SetGuidance(“Size of the window");
fSizeCmd->SetDefaultUnit("cm");
fSizeCmd->SetUnitCandidates(“cm mm”);

•Delete the command in the destructor

Friday, November 21, 14

User-defined commands

• Define the action of the command in the SetNewValue()
method of the messenger:

void MyMessenger::SetNewValue
 (G4UIcommand* cmd,G4String string)
{
 if (cmd == fSizeCmd)
 {
 G4double value = fSizeCmd
 ->GetNewDoubleValue(string);

 ...->DoSomething(value);
 }

Friday, November 21, 14

Visualization

Friday, November 21, 14

Geant4 Visualization must respond to varieties of user
requirements

✓ Quick response to survey geometry and events

✓ Impressive special effects for demonstration

✓ High-quality output for publications

✓ Flexible camera control for debugging geometry

✓ Tools for highlighting overlapping of physical volumes

✓ Interactive picking of visualised objects
 …

 To get such a flexibility Geant4 supports several different external
visualization systems

Introduction

Friday, November 21, 14

Visualizable Objects
Simulation data you may like to see:

‣Detectors components
‣Geometry: solid, logic and physical volume
‣Particle trajectories and tracking steps
‣Hits of particles in detector components

Can also visualize other user-defined objects such as:

• A polyline, that is, a set of successive line segments (example: coordinate
axes)

•A marker which marks an arbitrary 3D position (example: eye guides)

Text

character strings for description
comments or titles …

Friday, November 21, 14

Visualization Attributes
Necessary for visualization, but not included in geometry

•Colour, visibility, wireframe/solid style, etc

✓A G4VisAttributes class holds all visualization attributes to be assigned to a
visualizable object

G4VisAttributes* myVisAtt = new G4VisAttributes();
 To set attributes:
 G4bool visibility = false;
 myVisAtt->SetVisibility(visibility);

Visualization is
skipped

✓A Class G4Color allows to build colors; it is instantiated by giving RGB
 components to its constructor:

 G4Colour::G4Colour(G4double r = 1.0,G4double g = 1.0,G4double b = 1.0)

For instance:
G4Color red(1.0, 0.0, 0.0);

Class G4VisAttributes can be instantiated directly with a color of your choice:
 G4VisAttributes* myVisColor = new
 G4VisAttributes(G4Color(1.,0.,0.));

Friday, November 21, 14

Assigning G4VisAttributes to a Logical Volume

G4Colour brown(0.7, 0.4, 0.1);
G4VisAttributes* copperVisAtt = new
G4VisAttributes(brown);

copperLV->SetVisAttributes(copperVisAtt);

The visualization attributes have to be assigned to the visualizable object:

•The class G4LogicalVolume holds a pointer to the class
G4VisAttributes

Friday, November 21, 14

•Defined with a class G4Polyline defined as a list of G4Point3D
objects polygonal line vertices

➡ A set of successive line segments used to visualize tracking steps,
 particle trajectories, coordinate axes, any other user-defined polyline

Polyline

Marker

•Set a mark to an arbitrary 3D position
➡ Usually used to visualize hits of particles

Set marker properties with:

SetPosition(const G4Point3D&)
SetWorldSize(G4double real_3d_size)
SetScreenSize(G4double 2d_size_pixel)

Friday, November 21, 14

G4 Visualisation Drivers
•Visualization drivers are interfaces of Geant4 to 3D graphics

software
•You can select your favorite one(s) depending on your purposes

Some of them work directly from Geant4:
✓OpenGL
✓Qt
• OpenInventor
• RayTracer
• ASCIITree
• Wt Experimental, use with caution

For other, Geant4 will dump a file in a specific format that you can later
visualize

• HepRep
• DAWN
•VRML
•gMocren

Friday, November 21, 14

OpenGL
➡View directly from Geant4
➡Requires additional GL libraries (already included on most Linux and

Windows systems)
➡Rendered, photorealistic image with some interactive features
zoom, rotate, translate
➡Fast response
➡Print to vector or pixel graphics
➡Movies

Friday, November 21, 14

Qt Libraries
➡View directly from Geant4

➡Requires addition of Qt and GL
libs (freely available on most
operating systems)

➡Rendered, photorealistic image

➡Many interactive features: zoom,
rotate, translate

➡Fast response

➡Expanded printing ability (vector
and pixel graphics)

➡Easy interface to make Movies

Friday, November 21, 14

OpenInventor

RayTracer
•Create a jpeg file (and with RayTracerX

option, also draws to x window)

•Can show geometry but not
trajectories

•Can render any geometry that Geant4
can handle (such as Boolean solids)
no other Vis driver can handle every

case
•Supports shadows, transparency and

mirrored surfaces

•Control from the OpenInventor GUI
 (view direclty from Geant4)

•Requires addition of OpenInventor libs
(freely available for most Linux and
Windows systems)

•Rendered, photorealistic image
•Many interactive features

Friday, November 21, 14

gMocren
✓Create a file to be viewed in the gMocren browser.
✓can show volume data such as Geant4 dose distrubutions overlaid with

scoring grids, trajectories and detector geometry
✓Can overlay patient scan data (from DICOM) with Geant4 geometry,

trajectories and dose

Friday, November 21, 14

How to use visualization drivers

-Visualization should be switched on using the variable
G4VIS_USE

-To select/use visualization driver(s) it is needed the proper
environmental variable that you either set by hand or that is set
for you by GNUMake or Cmake support scripts

Example (DAWN, OpenGLXlib, and VRML drivers):
setenv G4VIS_USE_DAWN 1
setenv G4VIS_USE_OPENGLX 1
setenv G4VIS_USE_VRML 1

Friday, November 21, 14

G4VisManager
✓To make your Geant4 application perform visualization, you must

instantiate and initialize "your" Visualization Manager in the main()
function.

.....
// Your Visualization Manager
#include "G4VisExecutive.hh"
.....

// Instantiation and initialization of the
Visualization Manager
#ifdef G4VIS_USE
G4VisManager* visManager = new G4VisExecutive;
visManager->Initialize();
#endif
.....
#ifdef G4VIS_USE
delete visManager;
#endif

Friday, November 21, 14

Visualization commands
/vis/ogl/ G4OpenGLViewer commands.
/vis/filtering/ Filtering commands.
/vis/geometry/ Operations on vis attributes of Geant4
 geometry.
/vis/set/ Set quantities for use in future
 commands where appropriate.
/vis/scene/ Operations on Geant4 scenes.
/vis/touchable/ Operations on touchables.
/vis/viewer/ Operations on Geant4 viewers.

/vis/viewer/set/viewpointThetaPhi 70 20
 /vis/viewer/zoom <scale_factor>
 /vis/viewer/set/style wireframe

 /vis/drawVolume and registers it
 /vis/specify logicLAr set specific logical volume for visualization
 /vis/viewer/flush close visualization

Friday, November 21, 14

Trajectory Filtering
✓Useful if you only want to view interesting trajectories discarding uninteresting ones.

-Soft filtering: trajectories are marked as invisible (but still written). Some drivers
allows to toggle them back to visible

-Hard filtering: uninteresting trajectories are not even written. Useful to avoid huge
graphics file

✓Available trajectory filtering models:
G4TrajectoryChargeFilter (chargeFilter) by electric charge
G4TrajectoryParticleFilter (particleFilter) by particle type
G4TrajectoryOriginVolumeFilter (originVolumeFilter) by trajectory originating

volume
G4TrajectoryAttributeFilter (attributeFilter) by trajectory attribute

✓Multiple filters are automatically chained together
Filters can be configured either by commands or in compiled code :

/vis/filtering/trajectories/create/particleFilter
/vis/filtering/trajectories/create/chargeFilter

Friday, November 21, 14

Thanks for your attention

Friday, November 21, 14

