
Luciano Pandola
INFN, LNS

Thanks to: N. Di Marco, S. Panacek and A. Tramontana

Part 2

TGraphs and TProfiles

TGraph & Co.

 An other basic object of ROOT: 2D scatter plots
 TGraph stores a set of points in (x,y)

 TGraphErrors: error bars
 TGraphAsymmErrors: asymmetric error bars
 TGraphBentErrors: asymmetric error bars in

diagonal directions
 TGraphPolar: polar scale …

 Many commands in common with the histograms
and functions
 Fit(), Draw()

Filling a TGraph* - 1

 Option #1: give each point individually

 Points can be edited/moved also in the GUI

Int_t n = 10;
TGraphErrors* gr = new TGraphErrors(n);
for (Int_t i=0;i<n;i++)
{
 gr->SetPoint(i,x,y);
 gr->SetPointError(i,x,y)
}
gr->Draw("AZP");

Filling a TGraph* - 2

 Option #2: feed
the vectors of
points and errors

 Int_t n = 10;
 Double_t x[n] = {-0.22, 0.05, 0.25, 0.35, 0.5,
0.61,0.7,0.85,0.89,0.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Double_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
 gr = new TGraphErrors(n,x,y,ex,ey);

TGraph options

 Can set dimension, type and color of the marker

 Drawing options given from TGraphPainter

 Can do exclusion plots or similar
 Check documentation for all options
 Can be done by the GUI

 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(21);

Drawing TGraphs

 Use the same commands as histograms to:
 draw, set title, set axis labels and options (e.g.

time scale), fit, …
gr->SetTitle("My Graph");
gr->GetXaxis()->SetTitle("energy (keV)");
gr->Fit("gaus");
gr->Draw("APL")

Draw axes Draw markers Draw line

Notice: axes are not drawn by default. The option A must be specified to have
them. If not given, the graph is drawn in the current coordinate system

TProfile
 Profile histograms (TProfile) alternative to 2D-

histograms
 Display the mean value of y and its error for each

bin in x
 Error: standard error on the mean (rms/√N)
 It is possible also to show the global rms as error

 Useful when you want to see the general trend of y
vs. x
 It makes sense when y is an unknown (but single-

valued) approximate function of x (apart from
statistical fluctuations)

TProfile – when to use it
 Real-life case:

 Monitor the stability of a DAQ system, a constant-
amplitude test pulse is injected every 10 or 20 s. The
measurement lasts for weeks

 How do we plot amplitude vs. time and identify
variations?

TGraph TH2D (logZ)

TProfile – when to use it
 Generate a TProfile from the TH2D

TH2D* h2 = …;
TProfile* prof = h2->ProfileX();
prof->Draw()

 Can use the same tools as for histograms (e.g. Fit)

TProfile – a caveat

 If the distribution is not "single-valued", you
can get anomalous values or error bars
 E.g. if the projection y(x) has two peaks

0.55 ± 0.04

Extra useful tools

TText and other utilities
 Can write text in any ROOT canvas

 Can also draw lines, arrows, boxes, arcs…
 TLine, TArrow, TBox, TArc

 Easy to do interactively with the GUI, from the toolbar
 Of course one can select font, style, size and color

arrow text box

marker

TText and other utilities
 Everything is also doable via command line or macro

TText* text = new TText(10,20,"Ciao");
text->SetTextFont(42);
text->SetTextSizePixels(16);
text->SetTextColor(kRed);
text->Draw("same");

 Graphical options managed by TAttText
 Alignment, angle, color, size, font

 Same for other objects
 TArrow* ar2 = new TArrow
(0.2,0.1,0.2,0.7,0.05,"|>");
 ar2->SetAngle(40);
 ar2->Draw();

x y

x1, y1, x2, y2, size, style

TLatex

 Latex-style math and tools are also supported
 \ replaced by #
h->GetYaxis()->SetTitle("#chi^{2}");
χ2

 Can be also used in a similar way as TText
TLatex lat;
lat.SetTextAlign(12);
lat.DrawLatex(x, y, "#frac{#pi}{2}");

 Usual GUI functionalities

TLegend

 It produces a legend (that
can be drawn on the
current canvas)
 Applies to all kinds of

ROOT objects (functions,
graphs, histograms)

 Can decide which attribute
(marker/line/fill) is
displayed for each
 Follows automatically the

changes of attributes

TLegend leg(0.1,0.7,0.48,0.9);
leg.SetHeader("Title");
leg.AddEntry(h1,""Histogram,"f");
leg.AddEntry("f1","Function","l");
leg.AddEntry("gr","Graph ","lep");
leg.Draw();

Scripts and C++

Convention on coding and
names

Based on Taligent rules

Classes Start with T TTree, TBrowser

Non-class types End with _t Int_t

Class data members Start with f fTree

Class methods Start with capital
letter

Loop()

Constants Start with k kInitialSize, kRed

Static variables Start with g gEnv

Class static data
members

Start with fg fgTokenClient

The scripts – unnamed scripts

 Suitable for very small tasks
 Start with "{" and end with "}"
 All variables in global scope
 No definition of classes and functions
 No input parameters

Unnamed script: hello.C
{
 cout << "Hello" << endl;
}

The scripts – named scripts

 Suitable for more complex tasks, which still do not
require an ad-hoc executable (it is a macro!)
 C++ functions
 Scope rules according to the standard C++
 The function has the same name as the file. It can be

executed (interpreted) with .x
root [3] .x myMacro.C

 Supports input parameters and classes

Named script: say.C
void say(TString what="Hello")
{
 cout << what << endl;
}

root [3] .x say.C
Hello
root [4] .x say.C("Hi")
Hi

ACLiC: Automatic Compiler of
Libraries for CINT

 Named scripts can be interpreted (line-by-
line) by the CINT interpreter
root [3] .x myMacro.C;

 Compiled to produce a shared library via
ACLiC (and then possibly executed)

root [3] .L myMacro.C++; //always recompile
root [3] .L myMacro.C+; //recompile if necessary
root [3] .x myMacro.C++; //compile and execute
root [3] .L myMacro_C.so; //load the shared library
root [3] myMacro(); //execute the function
root [3] .U myMacro_C.so; //unload the library

Named scripts: compiled vs.
interpreted

 A compiled named script is pratically equivalent to a
C++ executable
 Full C++/coding flexibility
 The syntax is checked by the compiler prior to the

execution
 Much faster (x5) than the interpreted macro
 Suitable for very complex tasks
 The only major difference is that you need to launch it

in a ROOT session
 Notice: if you compile a named script, you will need to

specify all relevant #include
 Not required if the script is interpreted

 Suggestion: always compile

The TFile's

TFile

 TFile is the ROOT object to handle I/O (binary) files
 Optimized to store ROOT objects, support data

compression
 ROOT format used for the raw data (or interchange

format) by several experiments
 Can be organized in sub-directories
 Options are:

NEW or CREATE create a new file for writing, if the file already exists the file is

not opened.
UPDATE open an existing file for writing. If no file exists, it is created
RECREATE create a new file, if the file already exists it will be overwritten
READ (default) open an existing file for reading

Open a file and get content
 Open a file for reading:

root[] TFile f("Example.root")
 List the content of the file

root[] f.ls()
TFile** Example.root ROOT file
 TFile* Example.root ROOT file
 KEY: TTree myTree;1 Example ROOT tree
 KEY: TH1F totalHistogram;1 Total Distribution
 KEY: TH1F mainHistogram;1 Main Contributor
 KEY: TH1F s1Histogram;1 First Signal
 KEY: TH1F s2Histogram;1 Second Signal

 Load/retrieve stored objects by name
root[] totalHistogram->Draw();
root[] TH1F* myHisto = (TH1F*)
f.Get(“totalHistogram”);

Works from
command line, not

from macros

General method
(need a cast)

More about TFiles
 When a ROOT file is opened it becomes the current directory

 Manual switch: file.cd();
 If there are no open files, the current directory is the memory

(gROOT)
 Histograms and trees that are created after the file

opening are saved automatically on it
 When the file is closed, all ROOT objects associated to it are

cleared from the memory
 Any ROOT object which derives from TObject (e.g.

Graphs, Canvas, Arrows, named parameters) can be
written on a ROOT file
 Must be added explicitly
myObject->Write(“name”);

How to use ROOT in other
C++ projects (Makefile or
cmake)

How to use ROOT in other
(external) programs - 1

 ROOT TTree/histograms can be typically generated
by DAQ, data analysis or simulations (e.g. a Geant4
application)

 In the real-life it is often necessary to use the ROOT
libraries within other external C++ programs
 Needed also if you want to convert a macro into a

stand-alone executable
 To make the thing work: the Makefile or the compiler

command line must contain:
 Compilation: the path to the ROOT header files (.h)
 Linking: the path to the ROOT compiled libraries (.so)

and the names of the libraries

How to use ROOT in other
(external) programs - 2

 A ROOT command (in $ROOTSYS/bin) is available
which gives back the "compiler-ready" options for
headers and libraries
 root-config –-cflags
On my own system, it gives :
-pthread -m64 -I/usr/local/root/include

 root-config –-libs
On my own system, it gives:
-L/usr/local/root/lib -lCore -lCint -lRIO -lNet -lHist
-lGraf -lGraf3d -lGpad -lTree -lRint -lPostscript -
lMatrix -lPhysics -lMathCore -lThread -pthread -lm -
ldl –rdynamic

 g++ hello.cc –o hello `root-config --
cflags --glibs`

An example: the Geant4
GNUmakefile

 To use ROOT in a Geant4 application, you just add
to the Geant4 GNUmakefile
CPPFLAGS += `root-config --cflags`
LDFLAGS += `root-config --libs`

 CPPFLAGS are the compiler options for the
compilation phase, while LDFLAGS are the
compiler options for the linking phase
 In other Makefiles/systems, the names of the flags

can be different
 The Geant4 GNUmakefile are deprecated now (will

be removed) but the concept is still valid for other
applications/Makefiles

An other example: cmake - 1

 The most recent ROOT releases have a ready-
for-the-use .cmake configuration file
$ROOTSYS/cmake/modules

 Also Geant4 has a cmake configuration file for
ROOT
[geant4-build]/Modules/FindROOT.cmake

 The directory of the ROOT cmake configuration
must be given to the executable cmake via the

 –DCMAKE_MODULE_PATH option

An other example: cmake - 2

 Edit the CMakeLists.txt file
 Retrieve ROOT, use headers and libraries

find_package(ROOT)
if (ROOT_FOUND)
 message("ROOT package found. --> ok ${ROOT_INCLUDE_DIR}")
else()
 message (FATAL_ERROR "ROOT NOT found")
endif()
…
include_directories(${ROOT_INCLUDE_DIR} ${Geant4_INCLUDE_DIR}
${PROJECT_SOURCE_DIR}/include)
…
target_link_libraries(myApplication ${Geant4_LIBRARIES}
${ROOT_LIBRARIES})

It is your turn, now:

 Try Task1 under

http://geant4.lngs.infn.it/ROOTCatania2014
/introduction/index.html

	Diapositiva numero 1
	TGraphs and TProfiles
	TGraph & Co.
	Filling a TGraph* - 1
	Filling a TGraph* - 2
	TGraph options
	Drawing TGraphs
	TProfile
	TProfile – when to use it
	TProfile – when to use it
	TProfile – a caveat
	Extra useful tools
	TText and other utilities
	TText and other utilities
	TLatex
	TLegend
	Scripts and C++
	Convention on coding and names
	The scripts – unnamed scripts
	The scripts – named scripts
	ACLiC: Automatic Compiler of Libraries for CINT
	Named scripts: compiled vs. interpreted
	The TFile's
	TFile
	Open a file and get content
	More about TFiles
	How to use ROOT in other C++ projects (Makefile or cmake)
	How to use ROOT in other (external) programs - 1
	How to use ROOT in other (external) programs - 2
	An example: the Geant4 GNUmakefile
	An other example: cmake - 1
	An other example: cmake - 2
	It is your turn, now:

