
Luciano Pandola
INFN, LNS

Thanks to: N. Di Marco, S. Panacek and A. Tramontana

Part 2

TGraphs and TProfiles

TGraph & Co.

 An other basic object of ROOT: 2D scatter plots
 TGraph stores a set of points in (x,y)

 TGraphErrors: error bars
 TGraphAsymmErrors: asymmetric error bars
 TGraphBentErrors: asymmetric error bars in

diagonal directions
 TGraphPolar: polar scale …

 Many commands in common with the histograms
and functions
 Fit(), Draw()

Filling a TGraph* - 1

 Option #1: give each point individually

 Points can be edited/moved also in the GUI

Int_t n = 10;
TGraphErrors* gr = new TGraphErrors(n);
for (Int_t i=0;i<n;i++)
{
 gr->SetPoint(i,x,y);
 gr->SetPointError(i,x,y)
}
gr->Draw("AZP");

Filling a TGraph* - 2

 Option #2: feed
the vectors of
points and errors

 Int_t n = 10;
 Double_t x[n] = {-0.22, 0.05, 0.25, 0.35, 0.5,
0.61,0.7,0.85,0.89,0.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Double_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
 gr = new TGraphErrors(n,x,y,ex,ey);

TGraph options

 Can set dimension, type and color of the marker

 Drawing options given from TGraphPainter

 Can do exclusion plots or similar
 Check documentation for all options
 Can be done by the GUI

 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(21);

Drawing TGraphs

 Use the same commands as histograms to:
 draw, set title, set axis labels and options (e.g.

time scale), fit, …
gr->SetTitle("My Graph");
gr->GetXaxis()->SetTitle("energy (keV)");
gr->Fit("gaus");
gr->Draw("APL")

Draw axes Draw markers Draw line

Notice: axes are not drawn by default. The option A must be specified to have
them. If not given, the graph is drawn in the current coordinate system

TProfile
 Profile histograms (TProfile) alternative to 2D-

histograms
 Display the mean value of y and its error for each

bin in x
 Error: standard error on the mean (rms/√N)
 It is possible also to show the global rms as error

 Useful when you want to see the general trend of y
vs. x
 It makes sense when y is an unknown (but single-

valued) approximate function of x (apart from
statistical fluctuations)

TProfile – when to use it
 Real-life case:

 Monitor the stability of a DAQ system, a constant-
amplitude test pulse is injected every 10 or 20 s. The
measurement lasts for weeks

 How do we plot amplitude vs. time and identify
variations?

TGraph TH2D (logZ)

TProfile – when to use it
 Generate a TProfile from the TH2D

TH2D* h2 = …;
TProfile* prof = h2->ProfileX();
prof->Draw()

 Can use the same tools as for histograms (e.g. Fit)

TProfile – a caveat

 If the distribution is not "single-valued", you
can get anomalous values or error bars
 E.g. if the projection y(x) has two peaks

0.55 ± 0.04

Extra useful tools

TText and other utilities
 Can write text in any ROOT canvas

 Can also draw lines, arrows, boxes, arcs…
 TLine, TArrow, TBox, TArc

 Easy to do interactively with the GUI, from the toolbar
 Of course one can select font, style, size and color

arrow text box

marker

TText and other utilities
 Everything is also doable via command line or macro

TText* text = new TText(10,20,"Ciao");
text->SetTextFont(42);
text->SetTextSizePixels(16);
text->SetTextColor(kRed);
text->Draw("same");

 Graphical options managed by TAttText
 Alignment, angle, color, size, font

 Same for other objects
 TArrow* ar2 = new TArrow
(0.2,0.1,0.2,0.7,0.05,"|>");
 ar2->SetAngle(40);
 ar2->Draw();

x y

x1, y1, x2, y2, size, style

TLatex

 Latex-style math and tools are also supported
 \ replaced by #
h->GetYaxis()->SetTitle("#chi^{2}");
χ2

 Can be also used in a similar way as TText
TLatex lat;
lat.SetTextAlign(12);
lat.DrawLatex(x, y, "#frac{#pi}{2}");

 Usual GUI functionalities

TLegend

 It produces a legend (that
can be drawn on the
current canvas)
 Applies to all kinds of

ROOT objects (functions,
graphs, histograms)

 Can decide which attribute
(marker/line/fill) is
displayed for each
 Follows automatically the

changes of attributes

TLegend leg(0.1,0.7,0.48,0.9);
leg.SetHeader("Title");
leg.AddEntry(h1,""Histogram,"f");
leg.AddEntry("f1","Function","l");
leg.AddEntry("gr","Graph ","lep");
leg.Draw();

Scripts and C++

Convention on coding and
names

Based on Taligent rules

Classes Start with T TTree, TBrowser

Non-class types End with _t Int_t

Class data members Start with f fTree

Class methods Start with capital
letter

Loop()

Constants Start with k kInitialSize, kRed

Static variables Start with g gEnv

Class static data
members

Start with fg fgTokenClient

The scripts – unnamed scripts

 Suitable for very small tasks
 Start with "{" and end with "}"
 All variables in global scope
 No definition of classes and functions
 No input parameters

Unnamed script: hello.C
{
 cout << "Hello" << endl;
}

The scripts – named scripts

 Suitable for more complex tasks, which still do not
require an ad-hoc executable (it is a macro!)
 C++ functions
 Scope rules according to the standard C++
 The function has the same name as the file. It can be

executed (interpreted) with .x
root [3] .x myMacro.C

 Supports input parameters and classes

Named script: say.C
void say(TString what="Hello")
{
 cout << what << endl;
}

root [3] .x say.C
Hello
root [4] .x say.C("Hi")
Hi

ACLiC: Automatic Compiler of
Libraries for CINT

 Named scripts can be interpreted (line-by-
line) by the CINT interpreter
root [3] .x myMacro.C;

 Compiled to produce a shared library via
ACLiC (and then possibly executed)

root [3] .L myMacro.C++; //always recompile
root [3] .L myMacro.C+; //recompile if necessary
root [3] .x myMacro.C++; //compile and execute
root [3] .L myMacro_C.so; //load the shared library
root [3] myMacro(); //execute the function
root [3] .U myMacro_C.so; //unload the library

Named scripts: compiled vs.
interpreted

 A compiled named script is pratically equivalent to a
C++ executable
 Full C++/coding flexibility
 The syntax is checked by the compiler prior to the

execution
 Much faster (x5) than the interpreted macro
 Suitable for very complex tasks
 The only major difference is that you need to launch it

in a ROOT session
 Notice: if you compile a named script, you will need to

specify all relevant #include
 Not required if the script is interpreted

 Suggestion: always compile

The TFile's

TFile

 TFile is the ROOT object to handle I/O (binary) files
 Optimized to store ROOT objects, support data

compression
 ROOT format used for the raw data (or interchange

format) by several experiments
 Can be organized in sub-directories
 Options are:

NEW or CREATE create a new file for writing, if the file already exists the file is

not opened.
UPDATE open an existing file for writing. If no file exists, it is created
RECREATE create a new file, if the file already exists it will be overwritten
READ (default) open an existing file for reading

Open a file and get content
 Open a file for reading:

root[] TFile f("Example.root")
 List the content of the file

root[] f.ls()
TFile** Example.root ROOT file
 TFile* Example.root ROOT file
 KEY: TTree myTree;1 Example ROOT tree
 KEY: TH1F totalHistogram;1 Total Distribution
 KEY: TH1F mainHistogram;1 Main Contributor
 KEY: TH1F s1Histogram;1 First Signal
 KEY: TH1F s2Histogram;1 Second Signal

 Load/retrieve stored objects by name
root[] totalHistogram->Draw();
root[] TH1F* myHisto = (TH1F*)
f.Get(“totalHistogram”);

Works from
command line, not

from macros

General method
(need a cast)

More about TFiles
 When a ROOT file is opened it becomes the current directory

 Manual switch: file.cd();
 If there are no open files, the current directory is the memory

(gROOT)
 Histograms and trees that are created after the file

opening are saved automatically on it
 When the file is closed, all ROOT objects associated to it are

cleared from the memory
 Any ROOT object which derives from TObject (e.g.

Graphs, Canvas, Arrows, named parameters) can be
written on a ROOT file
 Must be added explicitly
myObject->Write(“name”);

How to use ROOT in other
C++ projects (Makefile or
cmake)

How to use ROOT in other
(external) programs - 1

 ROOT TTree/histograms can be typically generated
by DAQ, data analysis or simulations (e.g. a Geant4
application)

 In the real-life it is often necessary to use the ROOT
libraries within other external C++ programs
 Needed also if you want to convert a macro into a

stand-alone executable
 To make the thing work: the Makefile or the compiler

command line must contain:
 Compilation: the path to the ROOT header files (.h)
 Linking: the path to the ROOT compiled libraries (.so)

and the names of the libraries

How to use ROOT in other
(external) programs - 2

 A ROOT command (in $ROOTSYS/bin) is available
which gives back the "compiler-ready" options for
headers and libraries
 root-config –-cflags
On my own system, it gives :
-pthread -m64 -I/usr/local/root/include

 root-config –-libs
On my own system, it gives:
-L/usr/local/root/lib -lCore -lCint -lRIO -lNet -lHist
-lGraf -lGraf3d -lGpad -lTree -lRint -lPostscript -
lMatrix -lPhysics -lMathCore -lThread -pthread -lm -
ldl –rdynamic

 g++ hello.cc –o hello `root-config --
cflags --glibs`

An example: the Geant4
GNUmakefile

 To use ROOT in a Geant4 application, you just add
to the Geant4 GNUmakefile
CPPFLAGS += `root-config --cflags`
LDFLAGS += `root-config --libs`

 CPPFLAGS are the compiler options for the
compilation phase, while LDFLAGS are the
compiler options for the linking phase
 In other Makefiles/systems, the names of the flags

can be different
 The Geant4 GNUmakefile are deprecated now (will

be removed) but the concept is still valid for other
applications/Makefiles

An other example: cmake - 1

 The most recent ROOT releases have a ready-
for-the-use .cmake configuration file
$ROOTSYS/cmake/modules

 Also Geant4 has a cmake configuration file for
ROOT
[geant4-build]/Modules/FindROOT.cmake

 The directory of the ROOT cmake configuration
must be given to the executable cmake via the

 –DCMAKE_MODULE_PATH option

An other example: cmake - 2

 Edit the CMakeLists.txt file
 Retrieve ROOT, use headers and libraries

find_package(ROOT)
if (ROOT_FOUND)
 message("ROOT package found. --> ok ${ROOT_INCLUDE_DIR}")
else()
 message (FATAL_ERROR "ROOT NOT found")
endif()
…
include_directories(${ROOT_INCLUDE_DIR} ${Geant4_INCLUDE_DIR}
${PROJECT_SOURCE_DIR}/include)
…
target_link_libraries(myApplication ${Geant4_LIBRARIES}
${ROOT_LIBRARIES})

It is your turn, now:

 Try Task1 under

http://geant4.lngs.infn.it/ROOTCatania2014
/introduction/index.html

	Diapositiva numero 1
	TGraphs and TProfiles
	TGraph & Co.
	Filling a TGraph* - 1
	Filling a TGraph* - 2
	TGraph options
	Drawing TGraphs
	TProfile
	TProfile – when to use it
	TProfile – when to use it
	TProfile – a caveat
	Extra useful tools
	TText and other utilities
	TText and other utilities
	TLatex
	TLegend
	Scripts and C++
	Convention on coding and names
	The scripts – unnamed scripts
	The scripts – named scripts
	ACLiC: Automatic Compiler of Libraries for CINT
	Named scripts: compiled vs. interpreted
	The TFile's
	TFile
	Open a file and get content
	More about TFiles
	How to use ROOT in other C++ projects (Makefile or cmake)
	How to use ROOT in other (external) programs - 1
	How to use ROOT in other (external) programs - 2
	An example: the Geant4 GNUmakefile
	An other example: cmake - 1
	An other example: cmake - 2
	It is your turn, now:

