
Maddalena Antonello
INFN, LNGS

Thanks to: N. Di Marco, S. Panacek and A. Tramontana, L. Pandola

Part 3

The TTree (finally!)

The ROOT trees (TTree)

n  A TTree is the ROOT implementation of a old-dear ntuple
n  Table of correlated values/objects

n  E.g. energy, time and id number of the same event
n  The objects are not necessarily numbers

n  It can be an array or any ROOT object (histos, functions, …)
n  This includes user-custom ROOT objects

n  The arrays can be also of variable size for each row
n  The actual size of the array is stored in an other column of the tree

n  Binary format, to save and efficiently manage a large
number of entries
n  It is a real option for storage (e.g. raw data)

The ROOT trees (TTree)

n  The TTree is organized in a hierarchical structure
of branches (TBranch) and leaves (TLeaf)
n  It is possible to read selectively from one branch

or leaf only à no need to load the entire tree

n  Additional branches can be added at a later stage
n  E.g. as a result of some kind of analysis

n  Surely the most powerful and flexible ROOT
object

Explore the content of a TTree

n  A TTree can be loaded from a TFile exactly like
a histogram, i.e. via ->Get()

[] TTree* myTree =

 (TTree*) f.Get(“name”);

[] myTree->StartViewer();

The tree viewer allows the
interactive access to the

tree and to all branches
and leaves à double click

to plot

TLeaf
TBranch

Command-line handling of
TTrees - 1

List of all variables (leaves and branches):
[] tree->Print()

One-dimensional plot of a variable
[] tree->Draw(“varname”)

Scatter plot of two variables
[] tree->Draw(“varname1:varname2”)
Add a graphical option (lego2)
[] tree->Draw(“varname1:varname2”, “”, “lego2”)
Add a cut based on an other variable
[] tree->Draw(“varname1:varname2”, “varname3>0”, “lego”)

Scatter plot of three variables
[] tree->Draw(“varname1:varname2:varname3”)

Command-line handling of
TTrees - 2

Show completely the content of one event (all leaves)
[]> tree->Show(eventNumber);

Fit of the 1-dim distribution of one variable
[]> tree->Fit(“func”, “varname”)
Fit adding a cut
[]> tree->Fit(“func”, “varname”, “varname > 10”)

Class TCut to define specific cuts
[]> TCut cut1=“varname1>0.3"
[]> tree->Draw(“varname1:varname2”,cut1)
[]> TCut cut2=“varname2<0.3*varname1+89“
[]> tree->Draw(“varname1:varname2”,cut1 && cut2)

Create, fill and store a TTree
n  It is a bit worksome: 5 steps required

1.  Create the TFile
2.  Create the TTree
3.  Register TBranches to TTree
4.  Fill the TBranches
5.  Write the output file

n  Easy situation: load branches (only numbers!)
from an existing ASCII file

TTree* tree = new TTree("tree","My Tree Title");
tree->ReadFile("myfile.dat","energy/D:time/D:id/I");

filename Branches and types (D, I)

Building a TTree - 1

n  Step 1: Create a new TFile

The constructor of TFile has arguments:
ü  file name (i.e. “test.root ")
ü mode: NEW or CREATE, RECREATE, UPDATE, or READ

TFile *myfile = new TFile(“test.root","RECREATE");

n  Step 2: Create a TTree object

The constructor of TTree has arguments:
ü  Tree Name (e.g. "myTree")
ü  Title (choose a descriptive one, possibly!)

TTree *tree = new TTree("myTree","A ROOT tree");

Building a TTree - 2

n  Step 3: Add the branches
n  Simplest option: TBranch = TLeaf

n  Each branch contains only one variable
n  Map each branch into a memory address (i.e. a

pointer)
Int_t ntrack;
Double_t energy;
Double_t myArray[10];
myTree->Branch(“NTrack",&ntrack,"ntrack/I”);
myTree->Branch("Energy",&energy,"energy/D");
myTree->Branch("MyArray",myArray,"myArray[10]/D");

Memory address where read
the value from

Notice: an array is already a pointer

Variable type

Building a TTree - 3

n  Many possible types

n  But one can also use user-custom classes as

TBranch
n  Typical case: the class already "packs" in itself

all the relevant information (e.g. MyEvent)
n  So, have a TTree of MyEvents

Building a TTree - 4

n  Step 3 (alternative): Add the Branches
from user-defined classes

ü  Branch Name
ü  Class name (optional)
ü  Memory address (pointer) of the object to be stored

ü  The class MyEvent may contain several data
members (e.g., Ntrack, Flag)

ü  Each of them becomes a TLeaf

MyEvent *event = new MyEvent();
myTree->Branch("EventBranch",”MyEvent”,&event);

User ROOTified
custom class

Building a TTree - 5
n  Step 4: Fill the TTree

event->nTrack = 5;
event->energy = 12.5;
myTree->Fill();

ü  Set the proper values to all variable/objects that have
been registered as branches or leaves and Fill()

ü  The operation can be repeated within a for() loop

n  Step 5: Save the TTree on the TFile
The method Write()of TFile writes
automatically all TTrees and all histograms

myFile->Write();

Extra filling options

n  There is the possibility to have arrays of variable
size as leaves of a TTree
n  Typical case: 1000 detectors and only one or two of

them are fired
n  Would you store two numbers and 998 zeroes?
n  Store only the two numbers (and the detector ID!)

n  The number of elements (n. of fired detectors) is
stored in another leaf

Int_t nDetectors;
Double_t energy[NMAX];
myTree = new TTree("tree","Global results");
myTree->Branch("NDetectors",&nDetectors,"NDetectors/I");
myTree->Branch("Energy",energy,"energy[NDetectors]/D");

Ok, now we want to read the
TTree back

n  Already described how to open, read and plot a
TTree from command line (interactively)
n  Print(), Draw(), Show(), …
n  Scatter plots, cuts on variables,…

n  But what about retrieving the content of each
TLeaf for each event from a macro or from a C++
code?

n  ROOT tutorial available in
$ROOTSYS/tutorials/tree1.C

How to read a TTree - 1

n  Open the TFile which contains the TTree

n  Retrieve the TTree (via the name)

TFile* file = new TFile ("tree1.root")
file.ls();

TTree * t1 =
(TTree*)file.Get("t1")
t1->Print();
(or) t1->StartViewer()

The TTree here has 5 leaves,
named ev, px, py, pz and random

How to read a TTree - 2

n  Create the appropriate variables to store the
data of leaves
Float_t px, py;

n  Map the branches/leaves that you want to read
into your local variables (passing the memory
address of them)
n  You do not have to read all branches, but only

some of them, if you wish
 t1->SetBranchAddress("px",&px)
 t1->SetBranchAddress("py",&py)

 Branch name Memory address

How to read a TTree - 3

n  Read each row of the TTree using GetEvent(ID);
t1->GetEvent(0); //read first event

n  After each call of GetEvent() , the variables that
are mapped to a branch get their actual values

n  One can loop over entries and read the entire tree

for (Int_t i=0;i<t1->GetEntries(); i++)
 {
 t1->GetEvent(i);
 //do what you need with the tree content
 }

Adding a branch to an existing
TTree

n  It is possible to add a new TBranch to a TTree
which already exists
n  Typical case: you want to add some extra variable

calculated from the others
TFile f("tree3.root", "update");
TTree *t3 = (TTree*)f->Get("t3");
Float_t new_v;
TBranch *newBranch = t3->Branch("newbr", &new_v, "newbr/
F");
for (Int_t i = 0; i < t3->GetEntries(); i++){
 new_v= gRandom->Gaus(0, 1);
 newBranch->Fill();
 }
t3->Write("", TObject::kOverwrite);

Fill only the new branch

Register the
new branch
to the tree

Save only new version

Load many TTrees: the
TChain

n  Sometimes, you want to merge/load trees split
in many files
n  Same tree name, same branches

n  May happen e.g. because
n  The tree is too big and it is split in many files
n  There is one file per each run of your experiment

and you want to load the entire dataset

TChain *ch = new TChain("tree");
ch->Add("run1.root");
ch->Add("run2.root");
ch->Print();
ch->GetEntries();…

Common name
of all trees

Add files

Use TChain as a TTree

The TTree friendship

TTree friends
n  In some cases, it is not possible/advisable to add a new

branch to an existing tree
n  The parent tree might be readonly (raw data!)
n  Risk of losing the original tree with an unsuccessful

attempt to save the modification
n  Solution: add a TTree friend

n  Each TTree has unrestricted access to all fields/data of its
own friends

To all practical purposes,
this is equivalent to a
single TTree which

contains tree, friend_tree1
and friend_tree2

Add friends to a TTree

n  AddFriend(”friendTreeName","fileName")
mytree->AddFriend("ft1","ff.root")
n  If no file name is given, the friend tree is looked for in

the same TFile as the starting tree

n  If the TTree's have the same name, it is mandatory
that the friend gets an "alias" so that the trees can
be distinguished
mytree->AddFriend("tree1 = tree",
"ff.root")
 alias original name

Access to the friends

n  Access:
“friendTreeName.branchName.leafName”
n The leafName is sufficient if it unambiguosly
identifies the leaf

n  Example:
mytree->Draw("t2.px")
mytree->Draw(“t2.pz”,”t1.px>0”)
mytree->SetBranchAddress("t2.px",&p)

n  List of all branches
mytree->Print("all");

Access to all
variables of all

TTrees

The friend list

n  The number of entries of the friends tree must
be equal or larger than the "main" tree

n  The "main" tree must be
the shortest one

n  ft1 can be friend of
tree, but tree cannot
be friend di ft1

Access to the friend list:
TTree::GetListOfFriends()

Definition of user-custom
ROOT classes

One more step ahead:
"ROOTify" your own class

n  It is possible to ROOTify user-classes, expanding the
ROOT list of classes, so that can be:
n  Instantiated by command line
n  written in ROOT files
n  used as branches in a Tree

n  Typical case: customized "containers” and new objects
inheriting from TObject (or TNamed) ROOT features
n  Encapsulate your event information in a MyEvent class and, in

turn, define a "run = TTree of MyEvent objects"
n  Can be also done:

n  Command line (but no I/O)
n  Via ACLiC (= compiled code)

Define your own class in
ROOT

n  Step 1: the user class must inherit from
TObject (or from the derived class TNamed)
n  The user class inherits all characteristics of the

ROOT objects, as the name (string) and all
methods for I/O and management (e.g.
Write())

n  Step 2: add to the source code the lines
 ClassDef(ClassName,ClassVersionID)
 At the end of the header (.h)
ClassImp(ClassName)
 At the beginning of the implementation (.c)

ClassDef() and ClassImp()

n  ClassDef() and ClassImp() are macros
defined in ROOT (Rtypes.h)

n  They are required to manage the I/O of the
object and other features:
n  The streamer methods to write the objects in

a ROOT file or as branches of a TTree.
n  Method ShowMembers()to list public class

members
n  User must provide a default constructor

A concrete example

class MyTRun : public TNamed, public MyRun
{
public:
 MyTRun() {;};
 virtual ~MyTRun(){;};

 ClassDef(MyTRun, 1) // Run class
};

#include "MyTRun.hh"

ClassImp(MyTRun);

.h

.c
Double inheritance

That's not enough…

n  Step 3: create a file called LinkDef.h. It is
required to notify ROOT of the presence of a
new user-custom class, to be included in the
dictionary

#ifdef __CINT__

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ class MyTRun;

#endif

Line to add

Still, that's not enough…
n  Step 4 (and last): prepare a Makefile which calls the

command rootcint, which generates the class
dictionary

 $(ROOTSYS)/bin/rootcint
 -f MyDictionary.cxx
 -c MyTRun.h LinkDef.h

n  LinkDef.h must be the last argument of the
rootcint command line

n  The name of the LinkDef file must contain the
string LinkDef.h or linkdef.h:
n  MyNice_LinkDef.h is ok

Loading and Using your brand-new
ROOT class (library)

n  From command line:
root[0] .L libMyTRun.so;
root[0] MyTRun theRun;
root[1] …
root[2] Tfile f(“run001.root”,”CREATE”);
root[3] theRun.Write(“run001”);

n  From script:
gSystem->Load(“libMyTRun.so”);
MyTRun theRun;

n  For a complete example see Event.cxx, Even.h,
EventLinkDef.h, Makefile in $ROOTSYS/test

ROOT extras

Other tools available in ROOT

n  In these lectures, there was only an overview of the
main tools available in ROOT

n  There are many more, e.g.
n  Linear algebra
n  Physics Vectors
n  Support for custom GUI's and interface to Qt
n  Handling of spectra (TSpectrum)
n  Python module (PyROOT)
n  Geometry package
n  HTML Automatic documentation

n  Not all tools are compiled by default when building
ROOT. Some of them have to be activated explicitly

Other tools available in ROOT

n  Additional tools for (advanced) fitting
n  Minuit2
n  RooFit

n  RooFit initialially developed by BaBar
n  Model the expected event distribution of events
n  Unbinned maximum likelihood fits
n  Generate "toy Monte Carlo" samples for various studies
gSystem->Load("libRooFit") ;
using namespace RooFit ;

n  Some modules/tools were provided by experiments or
by other users

Other tools available in ROOT

n  Toolkit for Multivariate Data Analysis (TVMA)
n  External package, distributed with ROOT

n  Includes advanced analysis tools of the “supervised
learning” family

n  Artificial Neural Networks, Boosted/Bagged decision trees,
Support Vector Machine, Multidimensional probability
density estimation, Rectangular cut optimisation

n  Since root version 5.11/06 TMVA is integrated in ROOT and can be
used directly from ROOT prompt

It is your turn, now:

n  Try Task2 under

http://geant4.lngs.infn.it/ROOTCatania2014/
introduction/index.html

Extra filling options - 2

n  Dynamic vectors (variable size) as leaves of a
Ttree

std::vector<Double_t> energy;
energy.push_back(3.4);
energy.push_back(2.7);
myTree = new TTree("tree","Global results");
myTree->Branch("Energy",&energy);

Vector size = 2
Is the number of fired
detectors

How to read a TTree - 4

n  With dynamical vectors

