Interaction with the Geant4

!’_ kernel — part 2 P

Luciano Pandola 'NH:';
INFN-LNS (- Geants

Partially based on a presentation by G.A.P. Cirrone (INFN-LNS)

Part V: Write information

!'_ on output files

Introduction: data analysis
i with Geant4

= For a long time, Geant4 did not attempt to
provide/support any data analysis tools

= The focus was given (and is given) to the central mission
as a Monte Carlo simulation toolkit

= As a general rule, the user is expected to provide her/his
own code to output results to an appropriate analysis
format

= Basic classes for data analysis have recently been
Implemented in Geant4 (g4analysis)

= Support for histograms and ntuples
= Output in ROOT, XML, HBOOK and CSV (ASCII)

= Appropriate only for easy/quick analysis: for advanced
tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
i simulation results

= Formatted (= human-readable) ASCI1 files

= Simplest possible approach is comma-separated values
(.csv) files

= The resulting files can be opened and analyzed by tools
such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, ...

= Binary files with complex analysis objects (Ntuples)
= Allows to control what plot you want with modular choice

of conditions and variables

= EX: energy of electrons knowing that (= cuts): (1)
position/location, (2) angular window, (3) primary/secondary ...

= Tools: Root , PAW, AIDA-compliant (PI, JAS3 and
OpenScientist)

i Output stream (G4cout)

= G4cout is a 1ostream object defined by Geant4.

= The usage of this objects is exactly the same as the
ordinary std: -cout except that the output
streams will be handled by G4U Imanager

= G4endl is the equivalent of std:-endl toend a
line
= Output strings may be displayed on another
window or stored In a file

= One can also use the file streams o
(std: :ofstream) provided by the C++ libraries

Output on screen — an
example

vold Steppinghction: :UserSteppinghction(const Gd5tep* aStep)

evtlh = eventhction -» Trasporto();

GdString particlelane = aStep -» GetTrack(] -» GetDynamicParticle() -» GetDefinition() -» GetParticleName();
Gdstring volumelzne = aStep -»GetPreStepPoint() -» GetPhysicalVolume() -» GetName();

Gddouble particleCharge = aStep -» GetTrack() -» GetDefinition() -» GetAtomicMumber();

Gddouble PDG=aStep-:GetTrack()-»GetDefinition()- Gethtomicass();

GdTrack* theTrack = aStep-»GetTrack();

Gddouble kineticEnergy = theTrack -» GetRineticEnergy();
Gdint trackID = aStep -» GetTrack() -» GetTrackID();
Gddouble edep = aStep-»GetTotalEnergyDepositi);

GdString nateriallzne = theTrack-»GetMaterial()-»GetName () ;

<< "Energy deposited--->" << " " << edep << " "
<< ”Charge--->" << " " << particleCharge << "™ "
" ' << KineticEnergy <<

<< ”Kinetic Energy --->" <<
<< G4endl;

Output on screen — an

;| example

To write a new ASCII file: a
recipe - 1

= Add to the include list of your class the <fstream>
header file

= This will allow to use the C++ libraries for stream on file

= Put into the class declaration (file .hh) an ofstream
(=output file stream) object (or pointer):
std::ofstream myFile;

= In this way, the file object will be visible in all methods
of the class

= Open the file, in the class constructor, or into a
specific method:
myFi1le.open(*“filename.out”,
std::10s::trunc);
= To append data to an existing file, you must specify
std::-10s::app

To write a new ASCII file: a

i recipe - 2

= Inside a reqularly called method (e.g. inside a virtual

method of an User Class), where appropriate, write
your data (i.e. G4double, G4i1nt, G4String,...) to

the file, in the same fashion of G4cout:

It (myFile.i1s _open()) // Check that file 1s opened
{

myFile << kineticEnergy/MeV << " " << dose << G4endl;

= This could be for instance the EndOfEventAction()
of the G4UserEventAction user class

= Finally close the file, in the class destructor, or into a
specific method: myFile.close();

Plotting with tools

' e B OPENOFFICE
Chart Wizard - S5tep 1 of 4 - Chart Tyy Selection
- T Range [6Sheetl $5A51.5B58
‘
| Standard Tvpes n Typies [~ Eirst row as label Chart results in worksheet
[~ First column as labegl Sheetl j
Chart type
|] !] Colum If the selected cells do not contain the desired data, select the data range now.
L Ra __/;'M'— Include the cells containing column and row labels if you want them to be included in your chart
% : sHala \ AutoFormat Chart
* Line

Choose a chart type

Pie 16

) | & i) B
Area 12
Seriesl @ “_'u.u /&
~| —m—Series2 R

a Lines

| S—

OB =@

&

[~ Show text elements in Data series in: " Rows * Columns
preview

e sequence al lhe conesponding valees of the first

: o | belp o | | |
MATIAB_| Lo
MATLAB

Area Graph
[rapiay 1he elements m & vanable 35 one or mare
curvs a0 fil the area banaath each curve

GNUPLOT

a singhe curve, malnces create one

Whn the variablo is & matre, the cunes 3
show I v coninbution of ach comse]
olomien 10 the tatal haight of the curs a8 any x interval

sincCxdxrykyd

Plotted Vardables
* Single vanable ~ plot & veclor or each column of &
abix &5 ong kb vs. 25 i

e ™ « Tt variables - plot the second variable in the

" wariable in the

qusnco

¥ the firs1 vaniable i3 & vector, i leagih must egusl
the sengih of the second vaniable and it rmust by
1 m nie

(=]
[SN R

il 1 vaeiable is a matrie, 15 size must aqual the
size of the second vanable and esch column must
| hir manatanic

More Information
See Ihe area reference page for more d d
nformation sbout the MATLAS area hs Sew also

Imnar boand wire B

[[| Ot Finee | | Close

!'_ G4analysis tools

i Native Geant4 analysis classes

= A basic analysis interface is available in Geant4 for
histograms (1D and 2D) and ntuples

= Make life easier because they are MT-compliant (no need
to worry about the interference of threads)

= Unique interface to support different output formats
= ROOT, AIDA XML, CSV and HBOOK

= Code Is the same, just change one line to switch from
one to an other

= Everything done via the public analysis interface
G4AnalysisManager

= Singleton class: Instance()

= Ul commands available for creating histograms at run-
time and setting their properties

i g4analysis

= Selection of output format Is hidden in a
user-defined .hh file

= All the rest of the code unchanged
= Unique interface

#1ftndet MyAnalysis h
#define MyAnalysis h 1

#include "'g4root.hh"

//#include "g4xml_hh"
//#include '"g4csv.hh' // can be used only with ntuples

#endi T

i Open file and book histograms

#include "MyAnalysis.hh"

void MyRunAction: :BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->SetVerboselLevel (1);
man->SetFirstHistold (1) , Start numbering of
histograms from ID=1
// Creating histograms
man->CreateH1(''h","Title", 100, 0., 800*MeV); ID=1
man->CreateH1("*"hh","Title",100,0.,10*MeV) ; D=2

// Open an output file
man_>0penFiIe("myoutput"){}» Open output file
+

i Fill histograms and close

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->FillH1(1, fEnergyAbs); ID=1
man->FilIH1(2, fEnergyGap); ID=2
+
void MyRunAction: :EndOfRunAction(const G4Run* aRun)
{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->Write();
man->CloseFile();

}
MyRunAction: :~MyRunAction()

{

delete G4AnalysisManager: :Instance();

}

i Histograms - 1

= Support linear and log scales and un-even
bins
= CreateH2() for 2D histograms

G4int CreateHl(const G4String& name, const G4String& title,
G4int nbins, G4double xmin, G4double xmax,

const G4String& unitName = "‘none',
const G4String& fcnName = "‘none',
const G4String& binSchemeName = "linear');

G4int CreateHl(const G4String& name, const G4String& title,
const std: :vector<G4double>& edges,
const G4String& unitName = "‘none',
const G4String& fcnName = '‘none'');

i Histograms - 2

= Can change parameters of an existing histogram
= Can fill with a weight

= Methods to scale, retrieve, get rms and mean
G4bool SetH1Title(G4int 1d, const G4String& title);
G4bool SetH1XAxisTitle(G4int 1d, const G4String& title);
G4bool SetH1lYAxisTitle(G4int 1d, const G4String& title);

G4bool FiIllIH1(G41nt 1d, G4double value, G4double weight =
1.0);

G4bool ScaleH1(G4int i1d, G4double factor);

G4int GetHlld(const G4String& name, G4bool warn = true) const;

i Histograms - 3

= Ul support available, to change parameters
(e.g. file name) at run-time

/analysis/setFileName name # Set name for the
histograms and ntuple file

/analysis/setHistoDirName name # Set name for the
histograms directory

/analysis/setNtupleDirName name # Set name for the
histograms directory

/analysis/setActivation true|false # Set activation option

/analysis/verbose level # Set verbose level

/analysis/hl/create

name title [nbin min max] [unit] [fcn] [binScheme] #

Create 1D histogram

i Ntuples

= g4tool supports ntuples

= Any number of ntuples, each with any number
of columns

= The content can be int/float/double

= For more complex tasks (e.g. full functionality
of ROOT TTrees) have to link ROOT directly

= Similar strategy as for histograms. Access

happens through the common interface
G4AnalysisManager

= Saved on the same output file with histograms

i Book ntuples

#include ""MyAnalysis.hh"
void MyRunAction: :BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager: :Instance();
man-> SetFirstNtupleld(l); Start numbering of
ntuples from ID=1
// Creating ntuple
man->CreateNtuple('name", "Title™"); :%-IDzl
man->CreateNtupleDColumn(*'Eabs') ;
man->CreateNtupleDColumn(*'Egap') ;
man->FinishNtuple();

man->CreateNtuple("'name2","title2"); :}-ID:Z
man->CreateNtuplelColumn(*"ID™);
man->FinishNtuple();

i Fill ntuples

= File handling and general clean-up as
shown for histograms

#include "MyAnalysis.hh'

void MyEventAction::EndOfEventAction(const G4Run* aRun)

{
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->Fi1lINtupleDColumn(l1, O, fEnergyAbs);
man->F1 1 INtupleDColumn(1, 1, fEnergyGap); ID=1,
man->AddNtupleRow(1); columns 0, 1

man->Fil INtuplelColumn(2, 0, fID); :}_ ID=2

man->AddNtupleRow(2); column 0

Part VI: User-defined sensitive
detectors: Hits and Hits

!’_ Collection

i The ingredients of user SD

= A powerful and flexible way of extracting information
from the physics simulation is to define your own SD

= Derive your own concrete classes from the base
classes and customize them according to your needs

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Hits collection G4THitsCollection<MyHit*>

i Hit class - 1

s Hit Is a user-defined class which derives from the
base class G4VHi1t. Two virtual methods

= Draw()
= Print()

= You can store various types of information by
Implementing your own concrete Hit class

= Typically, one may want to record information like
= Position, time and AE of a step

= Momentum, energy, position, volume, particle type of
a given track

= EtC.

i Hit class - 2

A “Hit” Is like a “container”, a empty box which
will store the information retrieved step by step

The Hit concrete class (derived by

Xi ™ G4VHit) must be written by the user: the
i ’\> user must decide which variables and/or
T= information the hit should store and when

/
AE = store them

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors

defined as sensitive). Stored in the “HitCollection”, attached
to the G4Event: can be retrieved at the EndOfEvent

i Hit class - 3

/ header file: MyHit.hh
#include “GAVHt hh* Example

class MyHit : public G4VHit {

plhl/?lilg:' 0

LyHi1t(); . bli thods t

tual ~MvHit(); public methods to
VH - yHIL) handle data member

inline void SetEnergyDeposit(G4double energy) { energyDeposit = energy; }

inline G4double GetEnergyDeposit() { return energyDeposit;}

... Il more get and set methods

private:

G4double energyDeposit; - data member (private)
... Il more data members

I

i Geant4 Hits

Since In the simulation one may have different
sensitive detectors In the same setup (e.g. a
calorimeter and a Si detector), it is possible to define
many Hit classes (all derived by G4VHIt) storing

different information

Class Hit1 : 7 = Class Hit2 :

B public G4VHIt bos = public G4VHit

Dir =

i Hits Collection - 1

At each step in a detector defined as sensitive, the method
ProcessHit() of the user SensitiveDetector class is

Inkoved: it must create, fill and store the Hit objects

X=1 X=2 X =3 X=3
Y=2 Y=0 Y=2 Y=2
T=3 T =3.1 T =4 T =6
AE =1 AE = 2 AE=3 | ~ ==sna AE =1
er 1 Step 2 Step 3 Step N

Hits collection (= vector<Hit>)

i Hits Collection - 2

= Once created in the sensitive detectors, objects of the

concrete hit class must be stored in a dedicated
collection

= Template class GATHItsCol lection<MyHIt>, which
Is actually an array of MyHIt*

s The hits collections can be accesses in different
phases of tracking

= At the end of each event, through the G4Event (a-
posteriori event analysis)

= During event processing, through the Sensitive Detector
Manager G4SDManager (event filtering)

The HCofThisEvent

Remember that you may have many kinds of Hits
(and Hits Collections)

HCofThisEvent

Attached to
G4Event™

i Hits Collections of an event

= A G4Event object has a G4HCofThisEvent
object at the end of the event processing (if it
was successful)

= The pointer to the G4HCofThisEvent object can

be retrieved using the
G4Event: :GetHCofThisEvent() method

s The G4HCofThisEvent stores all hits

collections creted within the event

= Hits collections are accessible and can be processes
e.g. in the EndOfEventAction() method of the

User Event Action class

i SD and Hits

= Using information from particle steps, a
sensitive detector either
= constructs, fills and stores one (or more) hit object
= accumulates values to existing hits

= Hits objects can be filled with information in
the ProcessHits() method of the SD

concrete user class 2 next slides

= This method has pointers to the current G4Step and
to the G4TouchableHistory of the ReadOut

geometry (if defined)

i Sensitive Detector (SD)

= A specific feature to Geant4 is that a user can
provide his/her own implementation of the detector
and Its response - customized

= To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector

abstract base class

= The principal purpose of the sensitive detector is to
create hit objects

= Overload the following methods (see also next slide):
« Inittialize()

» ProcessHits() (Invoked for each step if step starts in
logical volume having the SD attached)

« EndOfEvent()

Sensitive Detector

class G4VSensitiveDetector { |
public: abstract base class

" virtual void Initialize (G4A4HCofThisEvent*);
virtual void EndOfEvent(G4HCofThisEvent®);
protected:

virtual G4bool ProcessHits(G4Step™,
G4TouchableHistory*) = 0;

// header file: MySensitiveDetector.hh _
#include “G4VSensitiveDetector.hh“ |} pure virtual method

class MySensitiveDetector : public G4VSensitiveDetector {

public;
MySensitiveDetector(G4Strin name),
virtual ~MySensitiveDetector(); User

virtual void Initialize(G4HCofT hlsEvent*HCE) : concrete

virtual G4bool ProcessHits(G4Step* steP
G4Touchab eHistory* ROhist); SD class

virtual void EndOfEvent(G4HCofThisEvent*HCE); -

private: _ _ _
MyHitsCollection * hitsCollection;

G4int collectionlD;

ti

i SD implementation: constructor

= Specify a hits collection (by its unique name) for each
type of hits considered in the sensitive detector:

= Insert the name(s) in the collectionName vector

MySensitiveDetector::MySensitiveDetector(G4String detectorUniqueNarnnie)
: G4VSensitiveDetector(detectorUniquename),
collectionID(-1) {

collectionName.insert(“collection_name");

y

class G4VSensitiveDetector {

pfotected:
%4(}31011ecti0nN§1meVector collectiogl}lce?lllg;
This protected name vector must be filled in
Base class - // the constructor of the concrete class for
// registering names of hits collections

i SD implementation: Initialize()

= The Inttialize() method is invoked at the beginning of each event

s Construct all hits collections and insert them in the G4HCofThisEvent
object, which is passed as argument to Initialize()

= The AddHitsCollection() method of GAHCofThisEvent requires the
collection ID

= The unique collection ID can be obtained with GetCol lectionlID():

= GetCollectionID() cannot be invoked in the constructor of this SD class (It is
required that the SD is instantiated and registered to the SD manager first).

= Hence, we defined a private data member (collectionID), which is set at the
first call of the Initialize() function

void MySensitiveDetector::Initialize(G4AHCofThisEvent*HCE) {
if(collectionID < 0)
collectionID = GetCollectionID(0); // Argument : order % collect.

, , . [l as stored in the collectionName
hitsCollection = new MyHitsCollection

(SensitiveDetectorName, collectionName[0]¥

HCE -> AddHitsCollection(collectionID, hitsCollection);

j

i SD implementation: ProcessHits()

This ProcessHits() method is invoked for every step in the
volume(s) which hold a pointer to this SD (= each volume
defined as “sensitive”)

= The main mandate of this method Is to generate hit(s) or to
accumulate data to existing hit objects, by using information
from the current step

= Note: Geometry information must be derived from the
“PreStepPoint”

G4bool. MySensitiveDetector::ProcessHits(G4Step* stell:)
G4TouchableHistory*ROhist) {
MyHit* hit = new MyHit(); // 1) create hit

" // some set methods, e. g. for a tracking detector: o
G4double energyDeposit = step -> GetTotalEnergyDeposit(); // 2) fill hit
hit -> SetEnergyDeposit(energyDeposit); // See implement. of our Hit class

hitsCollection -> insert(aHit); // 3) insert in the collection
return true;

i SD implementation: EndOfEvent()

= This EndOfEvent() method is invoked at the
end of each event.

= Note Is invoked before the EndOfEvent function
of the G4UserEventAction class

void MySensitiveDetector::EndOfEvent(G4HCofThisEvent* HCE) {
;

i Processing hit information - 1

= Retrieve the pointer of a hits collection with the
GetHC()method of GAHCofThisEvent collection

using the collection index (a G4int number)

= Index numbers of a hit collection are unique and

don’t change for a run. The number can be obtained
by GASDManager: :GetCollectionlID(*name™);

= Notes:

= If the collection(s) are not created, the pointers of the
collection(s) are NULL: check before trying to access
it

= Need an explicit cast from G4VHiItsCol lection (see
code)

i Processing hit information - 2

= Loop through the entries of a hits collection to
access individual hits
= Since the HitsCollection is a vector, you can

use the [] operator to get the hit object
corresponding to a given index

= Retrieve the information contained in this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

= Store the output in analysis objects

i Process hit: example

void MyEventAction::EndOfEventAction(const G4Event* event) {
// index is a data member, representing the hits collection index of the
// considered collection. It was initialized to -1 in the class constructor _
if(index < 0) index= retrieve
G4SDManager::GetSDMpointer() -> GetCollectionID("myDet/myColl"); index
G4HCofThisEvent* HCE = event-> GetHCofThisEvent(); } retrieve all hits

collections
MvHitsCollection* hitsColl = 0;

if(HCE) hitsColl = (MyHitsCollection*) (HCE->GetHC(index)); retrieve hits
fhitsColl) | '\ collection by index
int numberHits = hitsColl->entries();
cast
for(int 1]>l_<:h 0;1l jhnulélbﬁrHits s1144) {
MyHit* hit = (*hitsColl)[il]; T
// Retrieve information from hit object, e.g. Iloop ovgr Individual
G4double energy = hit -> GetEnergyDeposit; hits, retrieve the data

... I/ Further process and store information

}
I
}

The HCofThisEvent

Remember that you may have many kinds of Hits
(and Hits Collections)

HCofThisEvent

Attached to
G4Event™

i Recipe and strategy - 1

= Create your detector geometry
= Solids, logical volumes, physical volumes

= Implement a sensitive detector and assign an
iInstance of it to the /ogical volume of your
geometry set-up
= Then this volume becomes “sensitive”

= Sensitive detectors are active for each particle steps, if
the step starts in this volume

i Recipe and strategy - 2

= Create hits objects in your sensitive detector
using information from the particle step

= You need to create the hit class(es) according to your
regquirements

= Store hits in hits collections (automatically
associated to the G4Event object)

= Finally, process the information contained in the

hit in user action classes (e.qg.
G4UserEventAction) to obtain results to be

stored in the analysis object

	Interaction with the Geant4 kernel – part 2
	Part V: Write information on output files
	Introduction: data analysis with Geant4
	Introduction: how to write simulation results
	Output stream (G4cout)
	Output on screen – an example
	Output on screen – an example
	To write a new ASCII file: a recipe - 1
	To write a new ASCII file: a recipe - 2
	Diapositiva numero 10
	G4analysis tools
	Native Geant4 analysis classes
	g4analysis
	Open file and book histograms
	Fill histograms and close
	Histograms - 1
	Histograms - 2
	Histograms - 3
	Ntuples
	Book ntuples
	Fill ntuples
	Part VI: User-defined sensitive detectors: Hits and Hits Collection
	The ingredients of user SD
	Hit class - 1
	Hit class - 2
	Hit class - 3
	Geant4 Hits
	Hits Collection - 1
	Hits Collection - 2
	The HCofThisEvent
	Hits Collections of an event
	SD and Hits
	Sensitive Detector (SD)
	Sensitive Detector
	SD implementation: constructor
	SD implementation: Initialize()
	SD implementation: ProcessHits()
	SD implementation: EndOfEvent()
	Processing hit information - 1
	Processing hit information - 2
	Process hit: example
	The HCofThisEvent
	Recipe and strategy - 1
	Recipe and strategy - 2

