Swift: OpenStack
Object Storage

Marica Antonacci - INFN Bari

Scuola di Cloud Computing
Bari, 24-28 Novembre 2014

Outline

Introduction

Key Elements & Concepts
Architecture

Geographically distributed cluster
Monitoring

Installation & Configuration

Swift

Swift is the software behind the OpenStack Object
Storage service.

Written in python. Over 100+ contributors from
many Org.

Provides a simple storage service for applications
using RESTtul interfaces

Provides maximum data availability and storage
capacity.

Production deployments

 Wikipedia
 Rackspace
 Hp Cloud

* Mercadollibre

* Disney

Massive Scaling with
Eventual Consistency

* Objects are protected by storing multiple copies of data
so that if one node fails, the data can be retrieved from
another node

 That means that you'll always get your data, they will be
dispersed on many places, but you could get an old
version of them (or no data at all) in some odd cases
(like some server overload or failure).

e But there are mechanisms built into Swift to minimize the
potential data inconsistency window: they are
responsible for data replication and consistency.

Consistent hashing

* RIng: represents the space of all possible computed
hash values divided in equivalent parts. Each part of
this space is called a partition.

|60
21600
a single wnode/p
THE RING STORAGE "
2R3 a ring with 32 partitions ‘—2'60/4 -
jlela(s
NEW STORAGE STORAGE —
\ hash(<<"artist">>,<<"REM">>)
1
STORAGE 2|60/2

* Rings are used to deduce where a particular piece of
data Is stored.

Data duplication

By default, Swift stores 3 copies of every objects, but
that's configurable.

Zone: is an isolated space that does not depend on
other zone, so in case of an outage on a zone, the
other zones are still available.

Concretely, a zone is likely to be a disk, a server, or a
whole cabinet, depending on the size of your cluster.

Each partition is replicated; each replica is placed as
uniguely as possible across the cluster.

accounts, containers,
objects

e In Swift, there are 3 categories of thing to store:
account, container and objects —> 3 independent rings

P partitions for account
(where log,(P) € N)

hash() - - .
. R

¢ The Ring, splitinto

references
C containers R replicas
(CeN) (where R € N and —p
here with R equals 3)
\ J —p
container |[----p | Partitions '
. for container
references ‘-----+---------/
O objects |
(O e N) . ittty \ —p
-------- P Zones . =
. for
object | ----, partition
| P |
L g T el |
'-p | Partitions \---p' Zones

 for objects . | for objects

..............................

Swift Components

Proxy Server

Object Server

7 e
swift-proxy

Container Server

Account Server

account container :

Replication
Auditors OpenStack Object Store

Reapers

Upload
Require

Swift deployment

Quorum

Download from

\\Qw e

N\

Load Balancer

¥
Proxy Proxy Proxy
/ Node /Nod& Node
Storag Storage Stqrage rage Storage
No Node Npde e Node
Storage Storage Storage Storage Storage
Naode Node N(Lde Node Node
Slorage Storage Storage Slorage Storage
Node Node Node Node Node
we 2 Zone3 Zone4d Tﬁﬁ/

Swift is a two-tier storage system
consisting of

* a proxy tier, which handles all
Incoming requests;

* an object storage tier where the
actual data is stored.

In addition, consistency processes
run to ensure the integrity of the
data.

Data Access

o By default, Swift OpenStack provides
o RESTful APIs
o CLI client (python-swiftclient)

o |tis possible to enable standard interfaces, like 83 (Amazon-compliant APIs)
and CDMI (Cloud Data Management Interface), adding the corresponding
middleware name in the proxy-server pipeline and its parameter section.

S3 Example: /etc/swift/proxy-server.conf

[pipeline:main]

pipeline = healthcheck cache swift3 s3token authtoken keystoneauth proxy-logging proxy-server
[filter:swift3]

use = eqgQ:swift3#swift3

[filter:s3token]

paste.filter_factory = keystone.middleware.s3_token:filter_factory
auth_port = 35357

auth_host controller

auth_protocol = https

« For CDMI the following extra package has to be installed too: https://
github.com/osaddon/cdmi

https://github.com/osaddon/cdmi

Data Security

Protect the cluster endpoint, enabling SSL support in
the proxy servers or using an SSL terminator (e.g.
Pound)

Node-to-node communication happens via HIT TP —>
deploy them on secure network (e.g. VLAN)

Node-to-node replication: rsync traffic is not encrypted
—> USe a secure network

Data encryption: relies on the backend storage system

Multi-regional clusters

A Region represents an additional level of tiering, or a group of zones, so all the
devices that belong to zones constituting a single region must belong to this region.

 The proxy nodes will have an affinity to a Region and be able to optimistically write
to storage nodes based on the storage nodes’ Region. Optionally, the client will
have the option to perform a write or read that goes across Regions (ignoring local
affinity),if required.

Asynchronous offsite replica / High-throughput Upload Affinity for local copy

1D 3 replicas are written in a Region

ﬁ Z}asynchronous replication to other Regions
/]

Region A

Region C

i ! ‘Fetch newest’ checks timestamps

Region B Region C

3)A single copy in each Region timestamp check

'E 8 E E B

Region A Region B Region C Region A Region B Region C

INFN Distributed Set-up

The Internet

 |nstallation on 3 different INFN
sites: LNGS, BA, PD

r Load balancer || [Load balancer Load balancer || |Load balancer
active backup active backup

AT People involved:

T\ \ o S. Stalio, M. Panella (LNGS)

e M. Antonacci (BA)

e S. Bertocco, C. Aiftimiei (PD)

INFN sieu INFN s“id | INFN site 3J

Hardware failure

e Hard drive failure detection in Swift
v Use swift-drive-audit

* pbased on the observation that when a drive is about
to fail, error messages will spew into /var/log/kern.log.

e swift-drive-audit Is a script can be run via cron to
watch for bad drives. If errors are detected, it will
unmount the bad drive, so that Swift can work around
it

Cluster health monitoring

* Use swift-dispersion-report tool

* pbased on config tile /etc/swift/dispersion.conf

[dispersion]

auth url = http://localhost:8088/auth/v1.@
auth_user = test:tester

auth_key = testing

endpoint type = internalURL

$ swift-dispersion-report

Queried 2621 containers for dispersion reporting, 19s, © retries
100.00% of container copies found (7863 of 7863)

Sample represents 1.98% of the container partition space

Queried 2619 objects for dispersion reporting, 7s, @ retries
100.08% of object copies found (7857 of 7857)
Sample represents 1.88% of the object partition space

Cluster telemetry and
monitoring

swift-recon middleware

The Swift Recon middleware can provide general machine stats
(load average, socket stats, /proc/meminfo contents, etc.) as well
as Swift-specific metrics:

The MD5 sum of each ring file.
The most recent object replication time.

Count of each type of quarantined file: account, container, or
object.

Count of “async_pendings” (deferred container updates) on
disk.

Swift-recon

e (Config section to be added in object/container/account-

server.conf

[pipeline:main]
pipeline = recon object-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

[pipeline:main]
pipeline = recon container-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

[pipeline:main]
pipeline = recon account-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

* Following information available

Request URI
frecon/load
frecon/mem
frecon/mounted
frecon/unmounted
/recon/diskusage
frecon/ringmd5
/recon/quarantined
frecon/sockstat
/recon/devices
frecon/async

frecon/replication

frecon/replication/ <type>

/recon/auditor/ <type>

Description

returns 1,5, and 15 minute load average

returns /proc/meminfo

returns ALL currently mounted filesystems

returns all unmounted drives if mount_check = True
returns disk utilization for storage devices

returns object/container/account ring md5sums

returns # of quarantined objects/accounts/containers
returns consumable info from /proc/net/sockstat|6

returns list of devices and devices dir i.e. /srv/node

returns count of async pending

returns object replication times (for backward compatibility)
returns replication info for given type (account, container, object)

returns auditor stats on last reported scan for given type (account, container, object)

Cluster Storage Overview

OPENSTACK CONTROLLER + NETWORK NODE
vmO1

vmO3 vmO4
I s\ift-account swift-account swift-account
inderbackup] swift-container swift-container swift-container
swift-object swift-Object | [swift-object
e
a4 wift Cluster | > o
s R || P e e > —

COMPUTE-NODE COMPUTE-NODE COMPUTE-NODE

Roadmap

» Create a swift user and the Object Storage endpoint in Keystone
 |nstall account/container/objects on vmO[2-4]
* |nstall proxy-server on vmoO1:

v configure the service

v create the rings (for each storage device on each node add entries to
each rinQ)

v rebalance the rings
v disseminate the rings

e Verify installation using the CLI tool and/or Horizon

WIKI per ['esercitazione:

* https://github.com/infn-bari-school/Swift/wiki

https://github.com/infn-bari-school/Swift/wiki

