Linux Containers and
Dockers

Quando, vantaggi e svantaggi

Dr. Fabio Fumarola

Contents DIK

e The Evolution of IT

* The Solutions: Virtual Machines vs Vagrant vs Docker
* Differences

 Examples
— Vagrant
— Docker

e P.S. CoreQS

From 1995 to 2015

Thin app on mobile,

Client-Server tablet
App ——

]
Well-defined stack: [[0 [0

Assembled by
developers using

- O/S best available
- Runtime services
- Middleware
-------------------------------------- Running on any
Monolithic pr?;sﬁggrlgssoejrzgs
Physical o
Infrastructure B8008 6656 (public/private/

virtualized)

2015 in Detail

DIK

e
e User DB
) . . " | + pov8 + v8) e .
® Static website postgresql + pgv8 + v ® Queue ¢ Analytics DB
nginx .5 + modsecurity + openssl + bootstrap ® had + hive + thrift + O DK
2 Redis + redis-sentine| N2doOp T hive +thri pen)
o0
s Web frontend

®% Background workers

Ruby + Rails + sass + Unicorn

Python 3.0 + celery + pyredis + libcurl + ffmpeg + libopencv
+ nodejs + phantomjs

- Development VM

i QA server

@
o7 APl endpoint
Python 2.7 + Flask + pyredis + celery + psycopg + postgresql-
client

Production Cluster
Public Cloud

Disaster recovery

1
Contributor’s laptop

Production Servers

Challenges DIK

* How to ensure that services interact consistently?

* How to avoid to setup N different configurations and
dependencies for each service?

 How to migrate and scale quickly ensuring
compatibility?
 How to replicate my VM and services quickly?

How to deal with different confs? [BLS

=] ‘ﬂ”l ‘ﬁl‘ ‘1

1. VIRTUAL MACHINES

Virtual Machines DIK

* Run on top of an Hypervisor

Pros
— fully virtualized OS
— Totally isolated

Cons

— Needs to take a snapshot of
the entire VM to replicate

| - Usesalotofspace

Host OS — Slow to move around

Server .

Hypervisors Trend

2011

— XEN: Default choice given Rackspace and Amazon use
— KVM: Bleeding edge users

2012

— KVM: Emerges as the lead
— XEN: Loses momentum

Hipervisors Trend

2013
— KVM: Maintains lead (around 90%+ for Mirantis)
— Vmware: Emerges as a surprising second choice

— Containers (LXC, Parallels, Docker): Web Hosting and SAS
focused

— Xen and HyperV: Infrequent requests (XenServer.org)

2014 - 2015

— ???

2. VAGRANT

Vagrant

 Open source VM manager released in 2010

* It allows you to script and package VMs config and
the provisioning setup via a VagrantFile

* |tis designed to run on top of almost any VM tool:
VirtualBox, VMVare, AWS, OpenStack!

* It can be used together with provisioning tools such
as shell scripts, Chef and Puppet.

1. https://github.com/cloudbau/vagrant-openstack-plugin

Vagrant: idea DIK

box = 'precise32’

url = 'http://files.vagrantup.com/precise32.box"’
Use a VagrantFile to install ~ hostname = “myprecisebox:

domain = ‘example.com’
1. an operating system ip = '192.168.0.42°

ram = '256'

2. Required libraries and

software Vagrant::Config.run do |config]|
config.vm.box = box
config.vm.box_url = url

and ﬁna”y run programs and config.vm.host_name = hostname + '.' + domain
] config.vm.network :hostonly, ip
processes of your final

application config.vm.customize |
‘modifyvm’, :id,
‘~-name', hostname,
‘--memory’, ram

]

end

Vagrant: Feature

Command-Line Interface
Vagrant Share
VagrantFile

Boxes

Provisioning

Networking

Synced Folders
Multi-Machine
Providers

Plugins

MAC OS X

Universal (32 and 64-bit)

|
.. WINDOWS

. Universal (32 and 64-bit)

LINUX (DEB)

32-bit| 64-bit

.

%2 LINUX (RPM)

32-bit| 64-bit

N

https://www.vagrantup.com/downloads

Vagrant: Demo

* |t allows us to interact with Vagrant

|t offers the following commands: box, connect,
destroy, halt, init, login, package a vm, rdp, ...

https://docs.vagrantup.com/v2/cli/index.html

Vagrant Example

1. Download and install VirtualBox and Vagrant

$ mkdir vagrant_first vm && cd vagrant_first vm

$ vagrant init

2. This will place a VagrantFile in the directory
3. Install a Box

$ vagrant box add ubuntu/trusty64

4. Using a Box -> https://vagrantcloud.com/

Vagrant.configure("2") do |config|
config.vm.box = "ubuntu/trusty64"
end

Vagran: Start

1. Start the box

$ vagrant up

2. Login into the vm

$ vagrant ssh

3. You can destroy the vm by

$ vagrant destroy

16

Vagrant: Synced Folders DIK

* By default, it shares your project directory to the /vagrant
directory on the guest machine.

$ vagrant up
$ vagrant ssh

$ Is /vagrant
--Vagrantfile

* If you create a file on your gues os the file will be on the
vagrant vm.

$ touch pippo.txt
$vagrant ssh
$ls /vagrant/

Vagrant: Provisioning

e Let’s install Apache via a boostrap.sh file
#!/usr/bin/env bash

apt-get update

apt-get install -y apache2
rm -rf /var/www
In -fs /vagrant /var/www

* If you create a file on your gues os the file will be on the
vagrant vm. (vagrant reload --provision)

Vagrant.configure("2") do |config|
config.vm.box = "hashicorp/precise32"
config.vm.provision :shell, path: "bootstrap.sh"

end

Vagrant: Networking

* Port Forwarding: llows you to specify ports on the guest
machine to share via a port on the host machine

Vagrant.configure("2") do |config|
config.vm.box = "hashicorp/precise32"

config.vm.provision :shell, path: "bootstrap.sh"
config.vm.network :forwarded_port, host: 4567, guest: 80
end

* By running vagrant reload or vagrant up we can see on
http://127.0.0.1:4567 our apache

* |t supports also bridge configurations and other
configurations (https://docs.vagrantup.com/v2/networking/)

Vagrant: Share and Provider DIK

e |tis possible to share Vagrant box via vagrant cloud (but?)

Providers

* By default Vagrant is configured with VirtualBox but you can
change the provider

$ vagrant up --provider=vmware_fusion

$ vagrant up --provider=aws

e How?

$ vagrant plugin install vagrant-aws

Vagrant: AWS Vagrantfile

Vagrant.configure("2") do |config|
config.vm.box = "sean"

config.vm.provider :aws do |aws, override|
aws.access_key id = "AAAAIIIIYYYY4444AAAA”

aws.secret_access key =
"c344441LoolLLU322223526labcdeQL12E34At3mm”
aws.keypair_name = "iheavy"

aws.ami = "ami-7747d01e"

override.ssh.username = "ubuntu"
override.ssh.private_key path = "/var/root/iheavy aws/pk-
XHHHHHMMMAABPEDEFGHOAOJH1QBH5324.pem"

end

3. DOCKER

Quick Survey

e How many people have heard of Docker before this
Seminar?

* How many people have tried Docker ?
* How many people are using Docker in production ?

DIK

What is Docker?

“Docker is an open-source engine to easily create
lightweight, portable, self-sufficient containers from
any application. The same container that a developer
builds and test on a laptop can run at scale, in
production, on VMs, OpenStack cluster, public clouds
and more.”

Docker.io

Docker in simple words DIK

* |tis atechnology that allow you running applications
inside containers (not VM)

* This assures that libraries and package needed by
the application you run are always the same.

* This means you can make a container for Memcache
and another for Redis and they will work the same in

any OS (also in Vagrant).

How does docker work?

e LinuX Containers (LXC)
e Control Groups & Namespaces (CGroups)

e AUFS
e Client —Server with an HTTP API

LXC- Linux Containers DIK

* It isauser-space interface for the Linux kernel containment
features

 Through a powerful APl and simple tools, it lets Linux users easily
create and manage system or application containers.

* Currently LXC can apply the following kernel features to contain

processes:
— Kernel namespaces (ipc, uts, mount, pid, network and user)

— Apparmor and SELinux profiles

— Seccomp policies

— Chroots (using pivot_root)

— Kernel capabilities & Control groups (cgroups)

cgroups DIK

e Control groups is a Linux kernel feature to limit, account and
isolate resource usage (CPU, memory, disk |/O, etc) of process

groups.

* Features:
— Resource limitation: limit CPU, memory...
— Prioritization: assign more CPU etc to some groups.
— Accounting: to measure the resource usage.
— Control: freezing groups or check-pointing and restarting.

LCX based Containers DIK

* It allows us to run a Linux system within another Linux system.

* A container is a group of processes on a Linux box, put together
is an isolated environment. Container

* From the inside it looks like a VM

* From the outside, it looks like normal
processes

Host OS

Server

Docker Features

e VE (Virtual Environments) based on LXC
* Portable deployment across machines

* Versioning: docker include git-like capabilities for tracking
versions of a container

 Component reuse: it allows building or stacking already
created packages. You can create ‘base images’ and then
running more machine based on the image.

* Shared libraries: there is a public repository with several
images (https://registry.hub.docker.com/)

Why are Docker Containers lightweight?

VMs Containers
m >
App App S
[>
| I
Bms :
L|bs ,
l___J C -
Original App Copy of Modified App
(No OS to take App
Up Space, resources, No 0S. Can Union file system allows
or require restart) Share bins/libs us to only save the diffs

Between container A
and container A’

Docker Installation Ubuntu

* AUFS support
$ sudo apt-get update

$ sudo apt-get intall linux-image-extra-'uname —r’
* Add docker repo

$ sudo sh —c “curl https://get.docker.io/gpg | apt-key add -~

$ sudo sh —c “echo deb http://get.docker.io/ubuntu docker \
main > /etc/apt/sources.list.d/docker.list”

* |nstall

32

$> sudo apt-get update
$> sudo apt-get install Ixc-docker

Docker Installation Vagrant

* Clone the docker repository

$ git clone https://github.com/dotcloud/docker.git

» Startup the vagrant image

$ vagrant up

 SSH into the image

$ vagrant ssh

* Docker client works normally

BASE COMMANDS

Docker: hello world

* Get one base image

$ docker pull ubuntu

* List images on your system

ubuntu 12.04 8dbd9e392a96 5 months 131.5 MB (virtual 131.5 MB)
ubuntu latest 8dbd9%e392a96 5 months 131.5 MB (virtual 131.5 MB)

ubuntu precise 8dbd9e392a96 5 months 131.5 MB (virtual 131.5 MB)
ubuntu 12.10 b750fe79269d 6 months 24.65 kB (virtual 180.1 MB)
ubuntu quantal b750fe79269d 6 months 24.65 kB (virtual 180.1 MB)

 Print hello world

$ docker run ubuntu:12.10 echo “hello world”

Detached mode

* Runin Docker using the detached flag (-d)

$ docker run —d ubuntu sh —c “while true; do echo hello

world; sleep 1; done”
$ docker ps

e Get the container’sid
ID . IMAGE COMMAND CREATED STATUS

78c88e279f26 ubuntu:12.04 /bin/sh -c while tru 14 seconds ago Up 11 seconds
e Attach to the container

$ docker attach <container id>

» Stop/Start/Restart the container

$ docker stop <container id>

Public Index & Network

e Pull an apache image from the public repo

$ docker search apache
$ docker pull creack/apache2

* Run the image and check the ports

$ docker run —d creack/apache2
$ docker ps

ID IMAGE COMMAND CREATED STATUS PORTS
369602483ae9 creack/apache2:latest /usr/sbin/apache2ctl 4 seconds ago Up 1 seconds 49153->80, 49154->443

* Expose public ports
$ docker run —d —p 8888:80 —p 4444:43 creack/apache?2

$ docker ps

Using Docker: the interactive way

$ docker run —i —t ubuntu bash
root@82fdsfs4885:/#

root@82fdsfs4885:/# apt-get update
root@382fdsfs4885:/# apt-get install memcached
root@82fdsfs4885:/# exit

« Commit the Image
$ docker commit "docker ps —q —I" user/memcached

« Start the image
$ docker crun —d —p 11211 —u daemon user/memcached memcached

38

Docker: app using scripts

e Write a Dockerfile

Memcached
FROM ubuntu
MAINTAINER Fabio Fumarola

RUN apt-get update

RUN apt-get install -y memcached

ENTRYPOINT [*memcached”]
USER daemon
EXPOSE 11211

e Build and Start the image

$ docker build —t=fabio/memcached
$ docker run —d fabio/memcached memcached

Other Commands

* Docker cp: copy a file from container to host

* Docker diff: print container changes

* Docker top: display running processes in a container

* Docker rm /rmi: delete container/image

* Docker wait: wait until container stop and print exit code

More on: http://docs.docker.io/en/latest/commandline/cli

Docker vs Vagrant?

* Less memory for Dockers w.r.t VMs

* With a VM you get more isolation, but is much heavier.
Indeed you can run 1000 of Dockers in a machine but not

thousand of VMs with Xen.
* A VM requires minutes to start a Docker seconds

There are pros and cons for each type.
* If you want full isolation with guaranteed resources a full VM
is the way to go.

* If you want hundred of isolate processes into a reasonably
sized host then Docker might be the best solution

CORE OS

CoreQOS

* A minimal operating system
* Painless updating: utilizes active/passive scheme to update
the OS as single unit instead of package by package.

* Docker container
e Clustered by default
e Distributed System tools: etcd key-value store

* Service discovery: easily locate where service are running in
the cluster

* High availability and automatic fail-over

CoreQOS

fEEE

core-host2

fEEEE

core-host3

fEEE

core-host4

EEEE

core-host5

Clustered by default

core-hostl

High availability and a
appl = fread)« = = — WEILE utomatic fail-over
u 4

Docker with CoreQS

* Integrates with etcd

Features -
|
* Automatically runs on each CoreQOS :
machine i
* Updated with regular automatic OS o iocker |
|
updates |
|
|
|

* Networking automatically configured

Example Akka cluster + Docker + CoreOS

https://github.com/dennybritz/akka- CoreOS Host
cluster-deploy

Single CoreOS host and the services running on it.

References DIK

* http://www.iheavy.com/2014/01/16/how-to-deploy-on-amazon-ec2-
with-vagrant/

* https://docs.vagrantup.com/v2/

e Vagrant: Up and Running Paperback —June 15, 2013
* https://github.com/patrickdlee/vagrant-examples

* https://linuxcontainers.org/ LXC

* https://www.kernel.org/doc/Documentation/cgroups/

* http://lamejournal.com/2014/09/19/vagrant-vs-docker-osx-tales-front/

 https://medium.com/@ marcos otero/docker-vs-vagrant-582135beb623

* https://coreos.com/using-coreos/docker/

