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Use case: HPC and distributed computing

• HPC = High Performance Computing 

• Our use case (LHC, Grid, etc.): distributed computing 

• divide a big task into (mostly) independent jobs 

• queue them and run them separately on a batch system 

• Geographic distribution 

• several computing centers (tiers) with their batch systems 

• federated: independent but capable of working together
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Local batch clusters

• Here we are interested in local batch clusters 

• they can be also made part of a federation (i.e. Grid) in case 

• Topology of the simplest local batch cluster: 

• one head node 

• several identical workers
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Batch system: head node

• Controls job submission and available resources 

• Available resources 

• how many workers are available 

• which ones are running jobs, which ones are free 

• Job submission and lifecycle 

• you place several jobs in a queue 

• customizable priority: some jobs are more important than others 

• match making: if a worker is capable of executing a certain job and 
it is idle, dispatches a waiting job there
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Batch system: worker nodes

• They are essentially number crunchers 

• Controlled by the head node 

• they execute what they are told to do
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IaaS, PaaS, administrative domains

• The same virtual cluster is seen both as IaaS and PaaS: 

• Infrastructure/Platform as a Service are a matter of perspective 

• Batch clusters have been existing way before the cloud! 

• user interaction with the platform: job submission 

• cloud is transparent: user completely unaware of its existence
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Stacking independent layers

• Architecture composed of independent layers 

• we add the cloud 

• use virtual machines instead of physical ones 

• Why do we add the cloud? 

• keep several use cases (tenants) isolated 

• use resources more efficiently: scale the cluster 

• all of it without changing user’s experience 

• Layer independency helps us retaining the 
former user interface ( job submission)
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Cloud awareness

• Clouds can be a very troubled environment 

• resources are diverse: same profile VMs can behave very differently 

• virtual machines are volatile: appear and disappear with zero notice 

• Cloud aware applications 

• scale promptly when underlying resources vary 

• deal smoothly with crashes: automatic failover and clean recovery
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Each layer must be cloud aware

• user jobs 

• dependency between jobs well defined 

• jobs must be resubmittable easily 

• something handling the workflow must detect 
a job error and resubmit it automatically 

• batch system 

• workers might disappear without notice 

• dynamic addition and removal of workers
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More cloud awareness

• Cloud awareness is about not making assumptions 

• no quality assumptions: be prepared for the worst 

• no quantity assumptions: resources as large as they get 

• Clouds are forcing programmers to add robustness to their code 

• this is always a good thing, with or without cloud 

• Basic rules for a cloud aware application 

• if you kill a job you do not lose important data 

• important data is saved on an external, secure resource
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HTCondor: a cloud aware batch system

• Actively developed and widely used since 1988 

• Completely free and open source 

• Clouds did not exist in 1988 but its design has always been robust 

• has many features to run opportunistically and deal with failures 

• HTCondor supports dynamic addition and removal of workers 

• head node does not have a static list of workers 

• workers self-register to the head node when they are up 

• head node removes them from the list when contact is lost
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Cloud independency
• Clouds speak different languages: find the Esperanto of clouds 

• work on several clouds at once (e.g. OpenStack, OpenNebula) 

• change our cloud controller without impacts on the applications 

• Basic operations (e.g. start/stop VMs, check status, list images): EC2 

• de facto industry standard developed by Amazon for their cloud 

• widely supported on server side by all major cloud controllers 
(OpenStack, CloudStack, OpenNebula, Eucalyptus) 

• bindings for several programming languages (e.g. boto for Python) 

• Alternative: OCCI (Open Cloud Computing Interface) 

• open standard, independent from industry, but less supported
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Elastic virtual clusters

• Value added of a virtual cluster: we can scale it 

• add virtual machines when needed 

• turn off idle virtual machines 

• Elastic clusters were born for commercial clouds (e.g. Amazon) 

• you pay per use: it’s better for your wallet to turn off unused VMs 

• Elastic clusters are ideal for non-constant usages 

• less used, or completely idle for some time, but also peak times 

• e.g. a web application for selling tickets for a Madonna concert 

• e.g. an interactive analysis cluster used at days and idle at nights
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Orchestration: internal and external

• We can turn on and off virtual machines manually 

• Or, we can use an orchestrator to do the work for us 

• Two types of orchestration possible 

• Internal orchestration: use something inside VMs to control scaling 

• External orchestration: cloud controller is responsible of scaling
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External orchestration

• Usually part of the cloud controller (e.g. OpenStack Heat) 

• Take actions triggered by values of sensors (e.g. Ceilometer) 

• Cloud-specific: every cloud has its own 

• In some cases difficult to get sensor values of what happens inside 
VMs (only external measurements) 

• Knowing the cloud status helps orchestrator taking better decisions 

• e.g. don’t deploy if no resources available instead of trial/error 

• (Next talk will be entirely about OpenStack Heat)
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Internal orchestration

• Much simpler (but simplistic) approach: works for some cases 

• Automatic scaling entirely embedded in the virtual cluster 

• no need to install tools outside it: it is self-contained 

• Tailor an application-specific sensor to take actions 

• e.g. too many waiting jobs → we need more VMs 

• Communicate our actions to the cloud via a standard interface 

• e.g. use EC2 to tell the cloud controller to start/stop VMs 

• Self-contained + standard interface → works on any cloud 

• Following examples are based on this approach
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Elastic and inelastic

• On real clouds resources are finite 

• we cannot expand promptly if we do not have free resources 

• We want to use resources as much as possible 

• keeping some free resources always is a waste: always saturate 

• Elastic clusters do not work in inelastic environments! 

• some tenants must shrink if we want others to expand 

• all, or some, tenants must be polite and relinquish resources 

• or we must force them to do
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A real life example: OpenStack @ CERN

• Everybody gets free resources, nobody relinquishes them 

• Resources ended quickly: huge inelastic wall when scaling
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Self-release and preemptiveness

• Build an elastic tool that turns off unused virtual machines 

• this is almost needed if we pay for resources 

• when we get them for free we are not pushed for using it 

• In addition we can have preemptiveness 

• turn off some virtual machines periodically (even if we need them) 

• we are giving others the room to run their VMs
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Rolling updates

• Rolling updates: update a running cluster without stopping operations 

• we turn periodically off all VMs running image version 0 

• we request new VMs with image version 1 

• Preemptiveness can be used for rolling updates 

• Easier if done by internal orchestration 

• internal orchestrator knows how many jobs are running on a 
specific virtual machine 

• external orchestrator commonly unaware of jobs (layers isolation)
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Turn off VMs in a virtual batch cluster

• Put the VM in drain mode 

• VM does not accept new jobs 

• Wait for every job on that VM to finish 

• When last job has gone, ask the cloud to turn it off 

• Never shutdown VM from the inside: 

• cloud controller might think VM is still there and never frees the slot 

• might lead to stale resources
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Virtual machines lifetime

• Most practical solution: enforce a maximum lifetime for VMs 

• cloud controller will turn them off after that time 

• does not care if something is running inside or not 

• Works better if our use case also relinquishes resources automatically 

• we shut down VM before someone forces its shutdown 

• forces our tenant to well behave 

• if she does not, kill VMs in any case
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elastiq

• elastiq: internal orchestrator for HTCondor-based virtual clusters 

• github.com/dberzano/elastiq
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Installing elastiq

• Do it on the head node: can also be non-virtual 

• Prerequisites: HTCondor and boto installed 

• yum install htcondor python-boto 

• RPM available: github.com/dberzano/elastiq/releases/latest 

• yum localinstall elastiq-<version>.noarch.rpm 

• All configuration in /etc/elastiq.conf (very simple)
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Configuration file

• [elastiq] 

• configure main parameters 

• time between checks, idle timeout before killing VMs… 

• [ec2] 

• EC2 authentication information 

• user-data to contextualize workers 

• [quota] 

• configure minimum and maximum running virtual machines
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Section [elastiq] / 1

• sleep_s = 5 

• check_queue_every_s = 15 

• how often to check for waiting jobs 

• check_vms_every_s = 45 

• how often to check for idle virtual machines 

• check_vms_in_error_every_s = 20 

• how often to check for virtual machines in error
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Section [elastiq] / 2

• waiting_jobs_threshold = 10 

• have at least 10 jobs waiting before asking for new virtual machines 

• waiting_jobs_time_s = 100 

• more than 10 jobs must be waiting for at least 100 s 

• n_jobs_per_vm = 4 

• each virtual machine can run 4 jobs
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Section [elastiq] / 3

• idle_for_time_s = 3600 

• a VM idle for more than 3600 seconds is killed 

• estimated_vm_deploy_time_s = 600 

• if a booted VM does not join cluster within 600 seconds it is killed 

• batch_plugin = htcondor 

• log_level = 0
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Section [quota]

• min_vms = 0 

• minimum number of running virtual machines 

• can be used to automatically deploy a virtual cluster (also static!) 

• max_vms = 3 

• maximum number of virtual machines to have
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Section [ec2] / 1

• api_url = https://dummy.ec2.server/ec2/ 

• server’s EC2 endpoint 

• aws_access_key_id = my_username 

• your EC2 access key ID 

• aws_secret_access_key = my_password 

• your EC2 password
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Section [ec2] / 2

• image_id = ami-00000000 

• AMI ID of workers image (use euca-describe-images for that) 

• api_version = 2013-02-01 

• key_name = your_ssh_key 

• flavour = m1.large 

• user_data_b64 =  

• contextualization file (user-data) to provide to the new VMs 

• encode text file in a one-line base64 

• cat user-data-workers.txt | base64 | tr -d '\n'
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How to find EC2 information in OpenStack

• Download EC2 Credentials > look for variables into .sh file
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Specializing a VM: contextualization

• Boot-time procedure to specialize VM: single image for different uses 

• Using scripts or standard tools inside the VM (e.g. cloud-init) 

• VM will find its contextualization file in a known place (e.g. webserver)
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Inside a Virtual Analysis Facility

• A virtual analysis facility is 

• a set of virtual machines 

• running the HTCondor batch system 

• capable of growing and shrinking autonomously with elastiq 

• You launch only the head node with elastiq: the rest is automatic 

• User interacts only by submitting jobs 

• Elasticity is embedded: no external tools are needed 

• only requires EC2 on the hosting cloud
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PROOF and PoD

• PROOF: analysis tool specific to High Energy Physics for computing 

• concepts similar to Hadoop: map + reduce 

• distributed analysis: event-based parallelism 

• computing nodes communicate with each other 

• efficient pull scheduler: nodes ask for workload when idle 

• PROOF on Demand (PoD): 

• submit normal jobs on batch systems 

• they are pilot jobs interactively receiving from PROOF the workload 

• use batch resources in an interactive way
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Pull scheduling in PROOF

• Also: new PROOF workers can join a processing at any time 

• PROOF is cloud aware: assigns workload opportunistically
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Grid site on opportunistic clouds

• Some dedicated high performance farms are unused sometimes 

• e.g. the High Level Trigger of LHC experiments 

• Opportunistic use with no messing with special hardware setup 

• turn them into clouds → run virtual farms on top 

• On the ALICE HLT @ LHC we run an opportunistic Grid site 

• based on elastiq: scales when needed 

• seen as a normal Grid site from the outside 

• only with a variable number of resources 

• We have introduced elasticity in a transparent way!
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Makeflow: jobs with dependencies

• Batch jobs are dumb and independent 

• Makeflow: describe a workflow of jobs through a manifest 

• text file similar to Makefiles: target: dependency1 dependency2… 

• each section is a job whose input is some other job’s output 

• controls job submission (and failures) over HTCondor (or others) 

• Example: process many physics events and merge all results 

• several jobs, then a single long merge job 

• We use elastiq to turn off VMs when only this job is running 

• Used for running software tests on the ALICE software
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