
Scuola RECAS di Cloud Computing - Bari, 27.11.2014

Dario Berzano

CERN

Elastic clusters 
and cloud-aware applications

Distributed computing 
and batch jobs

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Use case: HPC and distributed computing

• HPC = High Performance Computing

• Our use case (LHC, Grid, etc.): distributed computing

• divide a big task into (mostly) independent jobs

• queue them and run them separately on a batch system

• Geographic distribution

• several computing centers (tiers) with their batch systems

• federated: independent but capable of working together

3

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Local batch clusters

• Here we are interested in local batch clusters

• they can be also made part of a federation (i.e. Grid) in case

• Topology of the simplest local batch cluster:

• one head node

• several identical workers

4

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Batch system: head node

• Controls job submission and available resources

• Available resources

• how many workers are available

• which ones are running jobs, which ones are free

• Job submission and lifecycle

• you place several jobs in a queue

• customizable priority: some jobs are more important than others

• match making: if a worker is capable of executing a certain job and
it is idle, dispatches a waiting job there

5

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Batch system: worker nodes

• They are essentially number crunchers

• Controlled by the head node

• they execute what they are told to do

6

Cloud aware and cloud independent 
clusters and applications

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

IaaS, PaaS, administrative domains

• The same virtual cluster is seen both as IaaS and PaaS:

• Infrastructure/Platform as a Service are a matter of perspective

• Batch clusters have been existing way before the cloud!

• user interaction with the platform: job submission

• cloud is transparent: user completely unaware of its existence

8

infrastructure platform
virtual cluster administrator

she manages instantiation of VMs: 
sees the virtual cluster as IaaS

user submitting batch jobs
uses a service transparently on VMs: 

sees the virtual cluster as PaaS

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Stacking independent layers

• Architecture composed of independent layers

• we add the cloud

• use virtual machines instead of physical ones

• Why do we add the cloud?

• keep several use cases (tenants) isolated

• use resources more efficiently: scale the cluster

• all of it without changing user’s experience

• Layer independency helps us retaining the
former user interface (job submission)

9

cloud

user jobs

batch system

virtual machines

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Cloud awareness

• Clouds can be a very troubled environment

• resources are diverse: same profile VMs can behave very differently

• virtual machines are volatile: appear and disappear with zero notice

• Cloud aware applications

• scale promptly when underlying resources vary

• deal smoothly with crashes: automatic failover and clean recovery

10

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Each layer must be cloud aware

• user jobs

• dependency between jobs well defined

• jobs must be resubmittable easily

• something handling the workflow must detect
a job error and resubmit it automatically

• batch system

• workers might disappear without notice

• dynamic addition and removal of workers

11

cloud

user jobs

batch system

virtual machines

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

More cloud awareness

• Cloud awareness is about not making assumptions

• no quality assumptions: be prepared for the worst

• no quantity assumptions: resources as large as they get

• Clouds are forcing programmers to add robustness to their code

• this is always a good thing, with or without cloud

• Basic rules for a cloud aware application

• if you kill a job you do not lose important data

• important data is saved on an external, secure resource

12

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

HTCondor: a cloud aware batch system

• Actively developed and widely used since 1988

• Completely free and open source

• Clouds did not exist in 1988 but its design has always been robust

• has many features to run opportunistically and deal with failures

• HTCondor supports dynamic addition and removal of workers

• head node does not have a static list of workers

• workers self-register to the head node when they are up

• head node removes them from the list when contact is lost

13

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Cloud independency
• Clouds speak different languages: find the Esperanto of clouds

• work on several clouds at once (e.g. OpenStack, OpenNebula)

• change our cloud controller without impacts on the applications

• Basic operations (e.g. start/stop VMs, check status, list images): EC2

• de facto industry standard developed by Amazon for their cloud

• widely supported on server side by all major cloud controllers
(OpenStack, CloudStack, OpenNebula, Eucalyptus)

• bindings for several programming languages (e.g. boto for Python)

• Alternative: OCCI (Open Cloud Computing Interface)

• open standard, independent from industry, but less supported

14

Orchestration of 
elastic clusters

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Elastic virtual clusters

• Value added of a virtual cluster: we can scale it

• add virtual machines when needed

• turn off idle virtual machines

• Elastic clusters were born for commercial clouds (e.g. Amazon)

• you pay per use: it’s better for your wallet to turn off unused VMs

• Elastic clusters are ideal for non-constant usages

• less used, or completely idle for some time, but also peak times

• e.g. a web application for selling tickets for a Madonna concert

• e.g. an interactive analysis cluster used at days and idle at nights

16

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Orchestration: internal and external

• We can turn on and off virtual machines manually

• Or, we can use an orchestrator to do the work for us

• Two types of orchestration possible

• Internal orchestration: use something inside VMs to control scaling

• External orchestration: cloud controller is responsible of scaling

17

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

External orchestration

• Usually part of the cloud controller (e.g. OpenStack Heat)

• Take actions triggered by values of sensors (e.g. Ceilometer)

• Cloud-specific: every cloud has its own

• In some cases difficult to get sensor values of what happens inside
VMs (only external measurements)

• Knowing the cloud status helps orchestrator taking better decisions

• e.g. don’t deploy if no resources available instead of trial/error

• (Next talk will be entirely about OpenStack Heat)

18

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Internal orchestration

• Much simpler (but simplistic) approach: works for some cases

• Automatic scaling entirely embedded in the virtual cluster

• no need to install tools outside it: it is self-contained

• Tailor an application-specific sensor to take actions

• e.g. too many waiting jobs → we need more VMs

• Communicate our actions to the cloud via a standard interface

• e.g. use EC2 to tell the cloud controller to start/stop VMs

• Self-contained + standard interface → works on any cloud

• Following examples are based on this approach

19

Starvation

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Elastic and inelastic

• On real clouds resources are finite

• we cannot expand promptly if we do not have free resources

• We want to use resources as much as possible

• keeping some free resources always is a waste: always saturate

• Elastic clusters do not work in inelastic environments!

• some tenants must shrink if we want others to expand

• all, or some, tenants must be polite and relinquish resources

• or we must force them to do

21

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

A real life example: OpenStack @ CERN

• Everybody gets free resources, nobody relinquishes them

• Resources ended quickly: huge inelastic wall when scaling

22

Thu$2014)07)31$16:36:44 1 0,00
Thu$2014)07)31$16:55:34 2 0,31
Thu$2014)07)31$17:59:48 3 1,38
Fri$2014)08)01$01:23:58 4 8,79
Fri$2014)08)01$13:53:28 5 21,28
Fri$2014)08)01$14:05:52 6 21,49
Fri$2014)08)01$14:08:27 7 21,53
Fri$2014)08)01$17:29:15 8 24,88
Fri$2014)08)01$17:29:16 9 24,88
Fri$2014)08)01$18:56:34 10 26,33
Fri$2014)08)01$18:56:38 11 26,33
Fri$2014)08)01$19:00:28 12 26,40
Fri$2014)08)01$19:00:30 13 26,40
Fri$2014)08)01$19:21:10 14 26,74
Fri$2014)08)01$19:21:12 15 26,74
Fri$2014)08)01$20:17:02 16 27,67
Fri$2014)08)01$20:17:03 17 27,67
Fri$2014)08)01$20:28:25 18 27,86
Fri$2014)08)01$20:28:27 19 27,86
Fri$2014)08)01$20:31:32 20 27,91
Fri$2014)08)01$20:31:34 21 27,91
Fri$2014)08)01$20:34:24 22 27,96
Fri$2014)08)01$20:50:49 23 28,23
Fri$2014)08)01$20:53:28 24 28,28
Fri$2014)08)01$20:53:29 25 28,28
Fri$2014)08)01$21:21:05 26 28,74
Fri$2014)08)01$21:21:06 27 28,74
Fri$2014)08)01$21:37:32 28 29,01
Fri$2014)08)01$21:37:35 29 29,01
Fri$2014)08)01$21:55:31 30 29,31
Fri$2014)08)01$21:55:33 31 29,31
Fri$2014)08)01$22:02:02 32 29,42
Fri$2014)08)01$22:15:27 33 29,65
Fri$2014)08)01$22:24:40 34 29,80
Fri$2014)08)01$22:24:46 35 29,80
Fri$2014)08)01$22:38:11 36 30,02
Fri$2014)08)01$23:05:14 37 30,47
Fri$2014)08)01$23:05:17 38 30,48
Fri$2014)08)01$23:18:32 39 30,70
Fri$2014)08)01$23:32:15 40 30,93
Fri$2014)08)01$23:48:39 41 31,20
Fri$2014)08)01$23:53:05 42 31,27
Fri$2014)08)01$23:53:18 43 31,28

0$

5$

10$

15$

20$

25$

30$

35$

40$

45$

50$

Requested 50 workers

• After 21h: only 4 (8%)

• After 31h: 43 workers (86%)

• > 48h: all 50 workers

hours

nu
m

be
r o

f w
or

ke
rs

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Self-release and preemptiveness

• Build an elastic tool that turns off unused virtual machines

• this is almost needed if we pay for resources

• when we get them for free we are not pushed for using it

• In addition we can have preemptiveness

• turn off some virtual machines periodically (even if we need them)

• we are giving others the room to run their VMs

23

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Rolling updates

• Rolling updates: update a running cluster without stopping operations

• we turn periodically off all VMs running image version 0

• we request new VMs with image version 1

• Preemptiveness can be used for rolling updates

• Easier if done by internal orchestration

• internal orchestrator knows how many jobs are running on a
specific virtual machine

• external orchestrator commonly unaware of jobs (layers isolation)

24

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Turn off VMs in a virtual batch cluster

• Put the VM in drain mode

• VM does not accept new jobs

• Wait for every job on that VM to finish

• When last job has gone, ask the cloud to turn it off

• Never shutdown VM from the inside:

• cloud controller might think VM is still there and never frees the slot

• might lead to stale resources

25

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Virtual machines lifetime

• Most practical solution: enforce a maximum lifetime for VMs

• cloud controller will turn them off after that time

• does not care if something is running inside or not

• Works better if our use case also relinquishes resources automatically

• we shut down VM before someone forces its shutdown

• forces our tenant to well behave

• if she does not, kill VMs in any case

26

Internal orchestration in practice:  
elastiq

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

elastiq

• elastiq: internal orchestrator for HTCondor-based virtual clusters

• github.com/dberzano/elastiq

28

Ba
tc

h
sy

st
em

’s
qu

eu
e

waiting

running

running

running

waiting

Running VM
s

idle

working

idle

idle

working

Jobs waiting too
long will trigger a

scale up

Supports minimum and
maximum quota of VMs

You deploy only the master node:
minimum quota immediately
launches VMs automatically

cloud controller  
exposing EC2 API

turn off idle VMs
start new VMs

http://github.com/dberzano/elastiq

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Installing elastiq

• Do it on the head node: can also be non-virtual

• Prerequisites: HTCondor and boto installed

• yum install htcondor python-boto

• RPM available: github.com/dberzano/elastiq/releases/latest

• yum localinstall elastiq-<version>.noarch.rpm

• All configuration in /etc/elastiq.conf (very simple)

29

https://github.com/dberzano/elastiq/releases/latest

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Configuration file

• [elastiq]

• configure main parameters

• time between checks, idle timeout before killing VMs…

• [ec2]

• EC2 authentication information

• user-data to contextualize workers

• [quota]

• configure minimum and maximum running virtual machines

30

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Section [elastiq] / 1

• sleep_s = 5

• check_queue_every_s = 15

• how often to check for waiting jobs

• check_vms_every_s = 45

• how often to check for idle virtual machines

• check_vms_in_error_every_s = 20

• how often to check for virtual machines in error

31

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Section [elastiq] / 2

• waiting_jobs_threshold = 10

• have at least 10 jobs waiting before asking for new virtual machines

• waiting_jobs_time_s = 100

• more than 10 jobs must be waiting for at least 100 s

• n_jobs_per_vm = 4

• each virtual machine can run 4 jobs

32

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Section [elastiq] / 3

• idle_for_time_s = 3600

• a VM idle for more than 3600 seconds is killed

• estimated_vm_deploy_time_s = 600

• if a booted VM does not join cluster within 600 seconds it is killed

• batch_plugin = htcondor

• log_level = 0

33

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Section [quota]

• min_vms = 0

• minimum number of running virtual machines

• can be used to automatically deploy a virtual cluster (also static!)

• max_vms = 3

• maximum number of virtual machines to have

34

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Section [ec2] / 1

• api_url = https://dummy.ec2.server/ec2/

• server’s EC2 endpoint

• aws_access_key_id = my_username

• your EC2 access key ID

• aws_secret_access_key = my_password

• your EC2 password

35

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Section [ec2] / 2

• image_id = ami-00000000

• AMI ID of workers image (use euca-describe-images for that)

• api_version = 2013-02-01

• key_name = your_ssh_key

• flavour = m1.large

• user_data_b64 =

• contextualization file (user-data) to provide to the new VMs

• encode text file in a one-line base64

• cat user-data-workers.txt | base64 | tr -d '\n'

36

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

How to find EC2 information in OpenStack

• Download EC2 Credentials > look for variables into .sh file

37

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Specializing a VM: contextualization

• Boot-time procedure to specialize VM: single image for different uses

• Using scripts or standard tools inside the VM (e.g. cloud-init)

• VM will find its contextualization file in a known place (e.g. webserver)

38

base
image

some
more sw

snapshot

running virtual machines

context

context

batch
WN

batch
WN

live update

web
server

web
server

live update

base images

boot

Application example:  
the Virtual Analysis Facility

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Inside a Virtual Analysis Facility

• A virtual analysis facility is

• a set of virtual machines

• running the HTCondor batch system

• capable of growing and shrinking autonomously with elastiq

• You launch only the head node with elastiq: the rest is automatic

• User interacts only by submitting jobs

• Elasticity is embedded: no external tools are needed

• only requires EC2 on the hosting cloud

40

elastiqyour jobs virtual machine HTCondor

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

PROOF and PoD

• PROOF: analysis tool specific to High Energy Physics for computing

• concepts similar to Hadoop: map + reduce

• distributed analysis: event-based parallelism

• computing nodes communicate with each other

• efficient pull scheduler: nodes ask for workload when idle

• PROOF on Demand (PoD):

• submit normal jobs on batch systems

• they are pilot jobs interactively receiving from PROOF the workload

• use batch resources in an interactive way

41

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Pull scheduling in PROOF

• Also: new PROOF workers can join a processing at any time

• PROOF is cloud aware: assigns workload opportunistically

42

get next

master worker

pa
ck

et
 g

en
er

at
or

ready

processpacket

process
packet

get next
ready

processpacket

get next
ready

tim
e

Worker
0.83 0.77 0.5 0.23 0.17 0.33 0.47 0.27 0.37 0.67 0.0 0.73 0.57 0.53 0.13 0.43 0.63

Ev
en

ts

0

500

1000

1500

2000

2500

3000

3500

4000

Events per worker

Worker
0.83 0.77 0.5 0.23 0.17 0.33 0.47 0.27 0.37 0.67 0.0 0.73 0.57 0.53 0.13 0.43 0.63

Pa
ck

et
s

0

500

1000

1500

2000

2500

3000

3500

4000

Packets per worker

Mean 2.152
RMS 0.4368

Query Processing Time (s)
0 0.5 1 1.5 2 2.5

0

2

4

6

8

10

12

14

16

Mean 2.152
RMS 0.4368

Worker activity start (seconds)
Mean 2287
RMS 16.61

Query Processing Time (s)
2260 2270 2280 2290 2300 2310 2320 2330

2

4

6

8

10

12

14

16

Mean 2287
RMS 16.61

Worker activity stop (seconds)

Mean 2312
RMS 5.245

Query Processing Time (s)
2260 2270 2280 2290 2300 2310 2320 23300

0.5

1

1.5

2

2.5

3

3.5

4
Mean 2312
RMS 5.245

End of activity (seconds)

all workers
are done  
in ~20 s

Nonuniform workload distribution

Uniform completion time

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Grid site on opportunistic clouds

• Some dedicated high performance farms are unused sometimes

• e.g. the High Level Trigger of LHC experiments

• Opportunistic use with no messing with special hardware setup

• turn them into clouds → run virtual farms on top

• On the ALICE HLT @ LHC we run an opportunistic Grid site

• based on elastiq: scales when needed

• seen as a normal Grid site from the outside

• only with a variable number of resources

• We have introduced elasticity in a transparent way!

43

Dario.Berzano@cern.ch - Scuola RECAS di Cloud Computing - Elastic clusters and cloud-aware applications

Makeflow: jobs with dependencies

• Batch jobs are dumb and independent

• Makeflow: describe a workflow of jobs through a manifest

• text file similar to Makefiles: target: dependency1 dependency2…

• each section is a job whose input is some other job’s output

• controls job submission (and failures) over HTCondor (or others)

• Example: process many physics events and merge all results

• several jobs, then a single long merge job

• We use elastiq to turn off VMs when only this job is running

• Used for running software tests on the ALICE software

44

