

Royal Holloway

University of Londor

Ion acceleration from laser driven collisionless shockwaves in optically shaped gas targets

Nicholas Dover John Adams Institute for Accelerator Science Imperial College London

2nd European Advanced Accelerator Concepts Workshop, 13-19 September 2015

http://www.adams-institute.ac.uk

Acknowledgements

Imperial College London

N.P. Dover, R.J. Kingham, Z. Najmudin

N. Cook, C. Maharjan, P. Shkolnikov

O. Tresca, M.N. Polyanskiy, I.V. Pogorelsky John Adams Institute ons accelerated from a moving shock

John Adams Institute ons accelerated from a moving shock

Imperial College 🔊 🗛-ṢẠII

2nd EAAC Workshop

- CO₂ experiments with gas jets showed >MeV spectrally peaked proton beams
 - Palmer et al. PRL 106 (2011)
 - ATF laser, ~1 J, a₀ ~1
 - E ~ 1 MeV, ΔE/E ~ 4%
 - ~10¹⁰-10¹¹ protons/MeV/sr
 - Haberberger *et al.* Nat. Phys. 8 (2012)
 - Neptune laser, ~60 J, a_0 ~ 2
 - E ~ 20 MeV, ΔE/E < 1%
 - ~10⁷ protons/MeV/sr
- Both experiments relied on pulse train from CO₂ laser to modulate density profile
- Pulse train can be unpredictable!

Laser axis z (mm)

FLASH (hydro)

Probing after intense pulse LPI shows good agreement between experiment and modelling

Effect of prepulse in helium

Using ~100 mJ prepulse generates ~10λ density ramp for main pulse to interact with

Imperial College

London

 Sharp density ramp allows efficient
 localised heating & shock generation

Effect of prepulse

lons/sr x108 Gas jet axis Gas jet axis nc No prepulse 1.4 1.1 0.9 y (mm) 0.7 Parameter space 1.2 3 <u>с</u> 0.5 ш^а 0.3 for ion generation .5 ~200 mJ prepulse 0.8 y (mm) 0.1 3 1.5 1.1 1.3 Main pulse a_0 He, E_{pp} =150 mJ **10**¹¹ 0.5 ~1 J prepulse 1.5 **Typical He** lons / MeV/sr spectrum 0⁹ .5 -1 1 z (mm) 10⁷ z (mm) 0.5 1.5 2.5 2 Energy (MeV)

Imperial College

London

John Adams Instite John Adams Instite for Accelerator Science

John Adams Institute Quasi-monoenergetic beams with hydrogen

When switching to hydrogen gas, for right prepulse level quasi-monoenergetic beams are generated:

John Adams Institute Observation of filamentation inside plasma

- Using a larger gas nozzle (2mm, Helium), we can investigate the dynamics of the plasma behind the critical surface
- Filaments seen

 parallel to laser
 direction
 extending up to
 800 microns into
 gas target

Using the output from hydrodynamic simulations of blast wave:

John Adams Institute 2D PIC reveals filamentation instability

Ion acceleration and electron transport in intense laser driven opaque gas targets, N.P. Dover

- Development of high power CO₂ lasers
 DESTIN 100 TW/CO leser upgrade for
 - BESTIA 100-TW CO₂ laser upgrade for ATF2[^]:
 - Completed: Solid state OPA front end
 - Completed: CPA proof-of-principle for CO₂ lasers*
 - Funded: New amplifier chain & femtosecond compression:
 - higher energy output (>35 J),
 - higher repetition rate (10 Hz)
 - <500 fs pulse length</p>
 - Important to investigate energy scaling and stability of acceleration from gas jet target

*Pogorelsky & Ben-Zvi, PPCF 56 (2013)
*Polyanskiy et al., Optica 2 (2015)

What does the future hold?

Ion acceleration and electron transport in intense laser driven opaque gas targets, N.P. Dover

- Developed technique of all-optical shaping of an overcritical gas target using secondary pulse
- Demonstration of proton and helium beams from shock acceleration
- High current electron beam filamentation in plasma
- New BESTIA laser at ATF2 will provide 100-TW at $\lambda_L = 10 \ \mu m$ for ion acceleration studies

College