Wakefield Acceleration of Positron Bunches in the Blowout Regime

Jorge Vieira

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

http://epp.ist.utl.pt[/jorgevieira]

Acknowledgments

- Work in collaboration with:
 - L. D. Amorim, R. A. Fonseca, J. T. Mendonça, L.O. Silva (IST); R.Trines, R. Bingham, P. Norreys (RAL)
- Simulation results obtained at SuperMUC and through PRACE awards

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Contents

Exotic laser beams

A entire new set of applications at low intensities

Lasers with orbital angular momentum for high gradient positron acceleration

Positron acceleration in the Plasma Wakefield Accelerator

Conclusions

Contents

Exotic laser beams

A entire new set of applications at low intensities

Lasers with orbital angular momentum for high gradient positron acceleration

Positron acceleration in the Plasma Wakefield Accelerator

Conclusions

Ultra-intense lasers have a multitude of applications

Achievements reached exploring very few fundamental properties (e.g. intensity)

Astrophysics	Particle acceleration	Radiation generation
B-field generation	Electrons	Betatron radiation
	S.F. Martins et al. (2010)	20 µm Ag foil
A. Flacco, J. Vieira <i>et al.</i> (2015)	Protons Image: Construction of the second of the	for the second

Exploring new fundamental degrees of freedom in lasers could also give rise to equally exciting achievements

IJi

Orbital angular momentum is a fundamental degree of freedom that stands in equal foot to laser intensity and duration

Revolutionary applications at low intensities below damage thresholds

Contents

Exotic laser beams

A entire new set of applications at low intensities

Lasers with orbital angular momentum for high gradient positron acceleration

Positron acceleration in the Plasma Wakefield Accelerator

Conclusions

One of the challenges for a plasma based linear collider is high gradient positron acceleration

OSIRIS 2.0 , 3.0 /dev

osiris framework

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis Infrastructure
- Developed by the osiris.consortium
 - \Rightarrow UCLA + IST

Ricardo Fonseca: ricardo.fonseca@ist.utl.pt Frank Tsung: tsung@physics.ucla.edu

http://cfp.ist.utl.pt/golp/epp/ http://exodus.physics.ucla.edu/

code features

- Scalability to ~300 K cores
- SIMD hardware optimized
- Tunnel (ADK) and Impact Ionization
- Optimized higher order splines
- Parallel I/O (HDF5)
- Boosted frame in 1/2/3D
- Ponderomotive guiding center

Laguerre-Gaussian lasers can drive doughnut shaped bubbles in strongly non-linear regimes

The onset of positron focusing and acceleration occurs when the inner sheath of the doughnut bubble merges on-axis

Non-linear theory in the blowout

Large blowout radius

$$\alpha = \frac{\Delta}{R_b} \ll 1$$

Focusing force in electron-focusing regions

$$W_r = \frac{r}{2} - \frac{R_b^2}{8r}$$

Focusing force in positron-focusing regions

$$W_r = \frac{r}{2} \begin{bmatrix} 1 - \frac{1}{4\alpha^2} \end{bmatrix} \simeq -\frac{r}{8\alpha^2}$$

Ion column Electron filament Strong positron focusing!

3D simulations show positron acceleration in strongly non-linear regimes

J.Vieira and J.T. Mendonça PRL **112**, 215001 (2014)

Stimulated Raman scattering

Stimulated Raman scattering: energy transfer from a long pump to a short probe leading to efficient pulse compression

ſſ

Science & Technology Facilities Council Rutherford Appleton Laboratory

Creation and amplification of new OAM modes through stimulated Raman scattering in plasmas

IJÎ

Production and amplification of new mode with l = 2

J. Vieira, R. Trines et al submitted for publication (2015)

Jorge Vieira | LPAW Guadeloupe | May 13 2015

Contents

Exotic laser beams

A entire new set of applications at low intensities

Lasers with orbital angular momentum for high gradient positron acceleration

Positron acceleration in the Plasma Wakefield Accelerator

Conclusions

Doughnut wakefields inject ring electron bunches which could then be a driver for a PWFA

Wake from a hollow e-beam driver

Positron acceleration with doughnut electron bunch drivers

Positron acceleration occurs in regions with high background plasma electron density or in regions without plasma (hollow channels)

High density electron filament

Doughnut blowout regime

Suck-in regime [S. Lee et al PRE (2001)]

Hollow plasma channel

Linear regime [T.Chiu et al PRL (1998); C. Schroeder et al PoP (2013)]

Nonlinear regime [A. Pukhov et al PRL 2014]

A positron beam driver can create a self-driven plasma hollow channel for positron acceleration

L.D. Amorim et al (2015)

Simulations show positron bunch energy gain inside the hollow channel

L.D. Amorim et al (2015)

Simulations show positron bunch energy gain inside the hollow channel

Positron focusing and accelerating fields in hollow channel created by narrow drivers

L.D. Amorim et al (2015)

→ Mainly focusing for lengths of ~ λ_p = 2 π inside the channel

→ Focusing due to plasma e⁻s in the channel region

Contents

Exotic laser beams

A entire new set of applications at low intensities

Lasers with orbital angular momentum for high gradient positron acceleration

Positron acceleration in the Plasma Wakefield Accelerator

Conclusions

Р

0

(7

Conclusions & Future work

Positron accelerations with exotic beams

- Lasers with orbital angular momentum
- Ring electron bunches
- Self-driven hollow channels by tightly focused positron bunches

Exotic beams can be produced experimentally

- Pure OAM lasers are not that different from Bessel beams which can also have orbital angular momentum
- Doughnut electron bunches have been produced in the LWFA and in conventional accelerators
- Tightly focused, overdense positron beam drivers could be achieved at lower plasma densities

