Design and Characterization of Permanent Magnetic Solenoids for REGAE

2nd EAAC Workshop - WG4

Max Hachmann

DESY

Elba, September 14, 2015

Outline

Motivation

Design

Assembling

Simulations

Field measurements

Conclusions

Outline

Motivation

Design

Assembling

Simulations

Field measurements

Conclusions

total length	9.5 m		
E _{kin}	5 MeV		
Δp_z	$\sim 10{ m keV/c}$		
bunch length	$\sim 10\text{fs} \hat{=} 3\mu\text{m}$		
bunch charge	$< 100 { m fC} (< 0.5 \cdot 10^6 e^-)$		
trans. norm. emittance	\sim 0.01 π mm mrad		

LAOLA@REGAE¹

Laser parameter		Bunch parameter	
Laser pulse energy	5 J	E _{kin}	7 MeV–13 MeV
Laser pulse length	25 fs–100 fs	Δpz	$\sim 200{\rm kev/c}$
Laser focus spot size	40 µm	norm. emittance	???
Plasma density	$10^{16}{ m cm}^{-3}$		

Figure 1: Setup for external injection in a laser-plasma wakefield

¹B. Zeitler et al., "Merging conventional and laser wakefield accelerators", in *Proc. SPIE*, vol. 8779, 2013.

> strong focusing $\rightarrow \sim 2\,\mu m@injection$ point

- > strong focusing $\rightarrow \sim 2\,\mu m@injection$ point
- > close to injection point

- > strong focusing $\rightarrow \sim 2\,\mu m@injection$ point
- > close to injection point

- > strong focusing $\rightarrow \sim 2\,\mu m@injection$ point
- > close to injection point

Solution:

> In-vacuum solution:

- permanent magnetic material (NdFeB)
- high surface current density
- strong focusing

- > strong focusing $\rightarrow \sim 2\,\mu m@injection$ point
- > close to injection point

- > In-vacuum solution:
 - permanent magnetic material (NdFeB)
 - high surface current density
 - strong focusing

- > strong focusing $\rightarrow \sim 2\,\mu m@injection$ point
- > close to injection point

- > In-vacuum solution:
 - permanent magnetic material (NdFeB)
 - high surface current density
 - strong focusing
- > focusing in both trans. directions

- > strong focusing $\rightarrow \sim 2\,\mu m@injection$ point
- > close to injection point

- > In-vacuum solution:
 - permanent magnetic material (NdFeB)
 - high surface current density
 - strong focusing
- > focusing in both trans. directions
- > In-vacuum movers for alignment and focus adjustment

Outline

Motivation

Design

Assembling

Simulations

Field measurements

Conclusions

- > design is optimized in terms of:
 - focusing strength
 - emittance growth
 - ▶ weight (<1.5 kg)

²T. Gehrke, "Design of permanent magnetic solenoids for REGAE", Master's thesis, University of Hamburg, Germany, 2013.

- > design is optimized in terms of:
 - focusing strength
 - emittance growth
 - weight (<1.5 kg)

> two ring design

Figure 2: CST simulation and wedge arrangement.

 $^2 {\rm T.}$ Gehrke, "Design of permanent magnetic solenoids for REGAE", Master's thesis, University of Hamburg, Germany, 2013.

- > design is optimized in terms of:
 - focusing strength
 - emittance growth
 - weight (<1.5 kg)
- > two ring design
- > each ring is made of 12 wedges

Figure 2: CST simulation and wedge arrangement.

 $^2 {\rm T.}$ Gehrke, "Design of permanent magnetic solenoids for REGAE", Master's thesis, University of Hamburg, Germany, 2013.

- > design is optimized in terms of:
 - focusing strength
 - emittance growth
 - weight (<1.5 kg)
- > two ring design
- > each ring is made of 12 wedges
- > wedges are radially magnetized

Figure 2: CST simulation and wedge arrangement.

 $^2 {\rm T.}$ Gehrke, "Design of permanent magnetic solenoids for REGAE", Master's thesis, University of Hamburg, Germany, 2013.

- > design is optimized in terms of:
 - focusing strength
 - emittance growth
 - weight (<1.5 kg)
- > two ring design
- > each ring is made of 12 wedges
- > wedges are radially magnetized

Figure 2: CST simulation and long. on-axis field B_z .

²T. Gehrke, "Design of permanent magnetic solenoids for REGAE", Master's thesis, University of Hamburg, Germany, 2013.

<i>Ri</i> [mm]	17	
<i>R</i> _o [mm]	25.4	
<i>l</i> ₁ [mm]	7.8	
<i>l</i> ₂ [mm]	44.8	
<i>m</i> [kg]	0.625	
$B_{z,max}$ [T]	\sim 0.44	
f@5 MeV [m]	~ 0.18	

Figure 2: CST simulation and long. on-axis field B_z .

 $^2 T.$ Gehrke, "Design of permanent magnetic solenoids for REGAE", Master's thesis, University of Hamburg, Germany, 2013.

Outline

Motivation

Design

Assembling

Simulations

Field measurements

Conclusions

> Flawed wedges reduce field quality

- > Flawed wedges reduce field quality
- > Magnetization errors cancel out for the right permutation

- > Flawed wedges reduce field quality
- > Magnetization errors cancel out for the right permutation
- > Two rings consist of 24 wedges
- $>~12!\cdot 12!\sim 2\cdot 10^{17}$ permutations

- > Flawed wedges reduce field quality
- > Magnetization errors cancel out for the right permutation
- > Two rings consist of 24 wedges
- $>~12!\cdot 12!\sim 2\cdot 10^{17}$ permutations
- > pool of \sim 100 wedges

- > Flawed wedges reduce field quality
- > Magnetization errors cancel out for the right permutation
- > Two rings consist of 24 wedges
- > 12! \cdot 12! \sim 2 \cdot 10¹⁷ permutations
- > pool of \sim 100 wedges
- > fast and 'intelligent' sorting algorithm required
 - analytical field description
 - quantity for field quality in order to optimize

Analytical field description

- > Describing mag. field via rectangular wire loops by means of *Biot-Savart's law*
- Orientation errors can be described by tilt of loops
- Magnetization strength error can be corrected via wire loop current

$$\mathbf{B}(\mathbf{r}) = \sum_{i=1}^{N} \sum_{j=1}^{4} \left(\frac{\mu_0}{4 \pi} \int_{l_{ij}} \mathbf{I}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \, \mathrm{d}l \right)$$

> Aim: small emittance growth

- > Aim: small emittance growth
- > Criterion: 4D-emittance-like quantity

- > Aim: small emittance growth
- > Criterion: 4D-emittance-like quantity

$$\epsilon_{4\mathrm{D}}^2 \sim egin{array}{ccc} \langle x^2
angle & \langle xp_x
angle & \langle xy
angle & \langle xp_y
angle \\ \langle xp_x
angle & \langle p_x^2
angle & \langle yp_x
angle & \langle p_x p_y
angle \\ \langle xy
angle & \langle yp_x
angle & \langle y^2
angle & \langle yp_y
angle \\ \langle xp_y
angle & \langle p_x p_y
angle & \langle yp_y
angle & \langle p_y^2
angle \end{array}$$

- > Aim: small emittance growth
- > Criterion: 4D-emittance-like quantity

$$\epsilon_{4\mathrm{D}}^2 \sim egin{array}{ccc} \langle x^2
angle & \langle xp_x
angle & \langle xy
angle & \langle xp_y
angle \\ \langle xp_x
angle & \langle p_x^2
angle & \langle yp_x
angle & \langle p_x p_y
angle \\ \langle xy
angle & \langle yp_x
angle & \langle y^2
angle & \langle yp_y
angle \\ \langle xp_y
angle & \langle p_x p_y
angle & \langle yp_y
angle & \langle p_y^2
angle \end{array}$$

- > Aim: small emittance growth
- > Criterion: 4D-emittance-like quantity

$$\epsilon_{4\mathrm{D}}^{2} \sim \begin{vmatrix} \langle x^{2} \rangle & \langle xp_{x} \rangle & \langle xy \rangle & \langle xp_{y} \rangle \\ \langle xp_{x} \rangle & \langle p_{x}^{2} \rangle & \langle yp_{x} \rangle & \langle p_{x}p_{y} \rangle \\ \langle xy \rangle & \langle yp_{x} \rangle & \langle y^{2} \rangle & \langle yp_{y} \rangle \\ \langle xp_{y} \rangle & \langle p_{x}p_{y} \rangle & \langle yp_{y} \rangle & \langle p_{y}^{2} \rangle \end{vmatrix}$$

- > Assumptions for 'particle tracking':
 - 1. zero emittance; ring-like distribution

1

- > Aim: small emittance growth
- > Criterion: 4D-emittance-like quantity

$$\epsilon_{4\mathrm{D}}^{2} \sim \begin{vmatrix} \langle x^{2} \rangle & \langle xp_{x} \rangle & \langle xy \rangle & \langle xp_{y} \rangle \\ \langle xp_{x} \rangle & \langle p_{x}^{2} \rangle & \langle yp_{x} \rangle & \langle p_{x}p_{y} \rangle \\ \langle xy \rangle & \langle yp_{x} \rangle & \langle y^{2} \rangle & \langle yp_{y} \rangle \\ \langle xp_{y} \rangle & \langle p_{x}p_{y} \rangle & \langle yp_{y} \rangle & \langle p_{y}^{2} \rangle \end{vmatrix}$$

- 1. zero emittance; ring-like distribution
- 2. 'infinitive' high energy \rightarrow beam size constant

1

- > Aim: small emittance growth
- > Criterion: 4D-emittance-like quantity

$$\epsilon_{4\mathrm{D}}^{2} \sim \begin{vmatrix} \langle x^{2} \rangle & \langle xp_{x} \rangle & \langle xy \rangle & \langle xp_{y} \rangle \\ \langle xp_{x} \rangle & \langle p_{x}^{2} \rangle & \langle yp_{x} \rangle & \langle p_{x}p_{y} \rangle \\ \langle xy \rangle & \langle yp_{x} \rangle & \langle y^{2} \rangle & \langle yp_{y} \rangle \\ \langle xp_{y} \rangle & \langle p_{x}p_{y} \rangle & \langle yp_{y} \rangle & \langle p_{y}^{2} \rangle \end{vmatrix}$$

- 1. zero emittance; ring-like distribution
- 2. 'infinitive' high energy \rightarrow beam size constant

1

3. 'particles' move on a straight line

- > Aim: small emittance growth
- > Criterion: 4D-emittance-like quantity

$$\epsilon_{4\mathrm{D}}^{2} \sim \begin{vmatrix} \langle x^{2} \rangle & \langle xp_{x} \rangle & \langle xy \rangle & \langle xp_{y} \rangle \\ \langle xp_{x} \rangle & \langle p_{x}^{2} \rangle & \langle yp_{x} \rangle & \langle p_{x}p_{y} \rangle \\ \langle xy \rangle & \langle yp_{x} \rangle & \langle y^{2} \rangle & \langle yp_{y} \rangle \\ \langle xp_{y} \rangle & \langle p_{x}p_{y} \rangle & \langle yp_{y} \rangle & \langle p_{y}^{2} \rangle \end{vmatrix}$$

- 1. zero emittance; ring-like distribution
- 2. 'infinitive' high energy \rightarrow beam size constant

1

- 3. 'particles' move on a straight line
- 4. Lorentz force:

•
$$p_x \sim -\int_a^b B_y \, dz$$

• $p_y \sim \int_a^b B_x \, dz$

Field Goodness

In front of PMS:

Field Goodness

Behind PMS:

Field Goodness

Behind PMS:

1st level Sorting: Random Arrangement

2nd level Sorting: simulated annealing³

³S. Kirkpatrick et al., "Optimization by simulated annealing", *Science*, vol. 220, no. 4598, pp. 671–680, 1983.

LAOLA

ASTRA simulation

- $> \epsilon_x = \epsilon_y = 0$
- > $x_{RMS} = y_{RMS} =$ 610 µm
- > no space-charge
- $> E_{kin} = 5 \,\mathrm{MeV}$

Emittance growth

ASTRA simulation

- > $x_{RMS} = y_{RMS} =$ 610 µm
- > no space-charge
- $> E_{kin} = 5 \,\mathrm{MeV}$

	Sol1	Sol2
$\epsilon_{\rm flawed}/\epsilon_{\rm flawless}$	1.32	1.06

Emittance growth

ASTRA simulation

	Sol1	Sol2	arbitrary
$\epsilon_{\mathrm{flawed}}/\epsilon_{\mathrm{flawless}}$	1.32	1.06	8.71

Proof of goodness criterion

Outline

Motivation

Design

Assembling

Simulations

Field measurements

Conclusions

- > $\epsilon_{n,x} =$ 0.041 mm mrad
- > $x_{RMS} = y_{RMS} =$ 0.707 mm
- $> Q = 100 \, \text{fC}$
- $> E_{kin} = 5.58 \text{ MeV}$

- > $\epsilon_{n,x} =$ 0.041 mm mrad
- > $x_{RMS} = y_{RMS} =$ 0.707 mm
- $> Q = 100 \, \text{fC}$
- $> E_{kin} = 5.58 \,\mathrm{MeV}$

	Sol1	Arbitrary
$\epsilon_{ m flawed}/\epsilon_{ m flawless}$	1.01	1.10

Outline

Motivation

Design

Assembling

Simulations

Field measurements

Conclusions

Requirements:

- $>\,$ relative precision $\rightarrow \sim 10 \times 10^{-4}$ (earth's magnetic field)
- > small active volume \rightarrow high gradients; nonlinear
- $>\,$ small dimensions $\rightarrow \sim 35\,mm$ inner diameter

Requirements:

- $>\,$ relative precision $\rightarrow \sim 10 \times 10^{-4}$ (earth's magnetic field)
- > small active volume \rightarrow high gradients; nonlinear
- > small dimensions $ightarrow \sim 35\,\mathrm{mm}$ inner diameter

Hall probe:

- > Metrolab THM1176-HF
- > 3-axes Hall probe
- > active volume: (150 \times 150 \times 10) μm^3

"+" marks the field sensitive point.

Metrolab 3D-Hall probe: Calibration

 Calibration relative to Metrolab-NMR probe of MEA in a dipole magnet

Metrolab 3D-Hall probe: Calibration

 Calibration relative to Metrolab-NMR probe of MEA in a dipole magnet

Figure 3: Long. field profile - measured and simulated.

Figure 3: Long. field profile - measured and simulated.

Figure 3: Long. field profile - measured and simulated.

	B _{z,max} [T]	f@5 MeV [m]
simulated	0.44	0.18
measured	0.42	0.20

Figure 3: Long. field profile - measured and simulated.

Outline

Motivation

Design

Assembling

Simulations

Field measurements

Conclusions

- > Successfully developed and assembled PMS
- > Developed an analytical magnetic field simulation tool
 - Sorting algorithm
 - Magnetic field measurements (analytical simulation tool describes a real/measured solenoidal field)
- > Beam-based measurements are lying ahead: alignment, focal beam size, emittance measurements, ...

Thank you for your attention.

Acknowledgment: F. Mayet, T. Gehrke, K. Floettmann, B. Zeitler

- T. Gehrke, "Design of permanent magnetic solenoids for REGAE", Master's thesis, University of Hamburg, Germany, 2013.
- [2] S. Kirkpatrick, C. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing", *Science*, vol. 220, no. 4598, pp. 671–680, 1983.
- B. Zeitler, I. Dornmair, T. Gehrke, M. Titberidze, A. R. Maier,
 B. Hidding, K. Floettmann, and F. Gruener, "Merging conventional and laser wakefield accelerators", in *Proc. SPIE*, vol. 8779, 2013.

Benchmark: Number of current loops

 $\,>\,$ Reducing number of wire loops \rightarrow speed-up calculations

Benchmark: Number of current loops

 $\,>\,$ Reducing number of wire loops \rightarrow speed-up calculations

$$1/f \sim \int_{-\infty}^{\infty} B_{z,0}^{2}(z) \,\mathrm{d}z$$

Benchmark: Number of current loops

 $\,>\,$ Reducing number of wire loops \rightarrow speed-up calculations

 $> N = 20 \rightarrow 1\%$ accuracy

Benchmark: Convergence of Field Goodness

Benchmark: Convergence of Field Goodness

Number field lines:

 $> N_{\text{lines}} = 24$

Max Hachmann | 2nd EAAC Workshop - WG4 | Page 26/26

Number of points along a line:

> $N_z = 500$

Background

🙀 🙀

LAOLA

Stage:

- > 3D linear stage
- > smallest step: 12.5 μ m
- > hall probe fixed on a half profile brass lance

MEA1: Test stand

Stage:

- > 3D linear stage
- > smallest step: 12.5 µm
- > hall probe fixed on a half profile brass lance

Adjustment table:

- > 3 adjustable feet and 1 horizontal rotatable plate; manually
- > min. step size: 12.5 µm

PMS alignment: Characteristic field properties

PMS alignment: Characteristic field properties

Polynomial series of a solenoidal field:

$$B_{z}(z,r) = B_{z,0} - \frac{r^{2}}{4} \frac{\mathrm{d}^{2}}{\mathrm{d}z^{2}} B_{z}(z) + \frac{r^{4}}{64} \frac{\mathrm{d}^{4}}{\mathrm{d}z^{4}} B_{z}(z) \dots$$
$$B_{r}(z,r) = -\frac{r}{2} \frac{\mathrm{d}}{\mathrm{d}z} B_{z}(z) + \frac{r^{3}}{16} \frac{\mathrm{d}^{3}}{\mathrm{d}z^{3}} B_{z}(z) - \frac{r^{5}}{384} \frac{\mathrm{d}^{5}}{\mathrm{d}z^{5}} B_{z}(z) \dots$$

PMS alignment: Characteristic field properties

Polynomial series of a solenoidal field:

$$B_{z}(z,r) = B_{z,0} - \frac{r^{2}}{4} \frac{\mathrm{d}^{2}}{\mathrm{d}z^{2}} B_{z}(z) + \frac{r^{4}}{64} \frac{\mathrm{d}^{4}}{\mathrm{d}z^{4}} B_{z}(z) \dots$$
$$B_{r}(z,r) = -\frac{r}{2} \frac{\mathrm{d}}{\mathrm{d}z} B_{z}(z) + \frac{r^{3}}{16} \frac{\mathrm{d}^{3}}{\mathrm{d}z^{3}} B_{z}(z) - \frac{r^{5}}{384} \frac{\mathrm{d}^{5}}{\mathrm{d}z^{5}} B_{z}(z) \dots$$

PMS alignment: Characteristic field properties

Polynomial series of a solenoidal field:

$$B_{z}(z,r) = B_{z,0} - \frac{r^{2}}{4} \frac{\mathrm{d}^{2}}{\mathrm{d}z^{2}} B_{z}(z) + \frac{r^{4}}{64} \frac{\mathrm{d}^{4}}{\mathrm{d}z^{4}} B_{z}(z) \dots$$
$$B_{r}(z,r) = -\frac{r}{2} \frac{\mathrm{d}}{\mathrm{d}z} B_{z}(z) + \frac{r^{3}}{16} \frac{\mathrm{d}^{3}}{\mathrm{d}z^{3}} B_{z}(z) - \frac{r^{5}}{384} \frac{\mathrm{d}^{5}}{\mathrm{d}z^{5}} B_{z}(z) \dots$$

> probe is just aligned by eye

 measuring transversal plane at z_{Bmax} for probe alignment (post-processing)

- > using zero field for PMS alignment
- > probe is just aligned by eye
- > measuring transversal plane at z_{Bmax} for probe alignment (post-processing)

x-/y-probe-axes alignment

 $\beta_x = -0.00741(4) \, \text{rad} \qquad \beta_y = 0.00443(4) \, \text{rad}$

remaining degrees of freedom: {*x*, *y*, *z*, α_x , α_y , α_z , β_z }

$$\chi^2 = \sum_{i}^{N} \left(\frac{|\boldsymbol{B}_{sim,i} - \boldsymbol{B}_{measure,i}|}{\sigma_i} \right)^2$$

> using simulated field for fitting

$$\chi^2 = \sum_{i}^{N} \left(\frac{|\boldsymbol{B}_{sim,i} - \boldsymbol{B}_{measure,i}|}{\sigma_i} \right)^2$$

> using simulated field for fitting

> keeping the grid orientation but finer grid \Rightarrow {x, y, z}

$$\chi^2 = \sum_{i}^{N} \left(\frac{|\boldsymbol{B}_{\textit{sim},i} - \boldsymbol{B}_{\textit{measure},i}|}{\sigma_i} \right)^2$$

> using simulated field for fitting
> keeping the grid orientation but finer grid ⇒ {x, y, z}
> rotating PMS in simulation ⇒ {β_x, β_y, β_z}

$$\chi^2 = \sum_{i}^{N} \left(\frac{|\boldsymbol{B}_{\textit{sim},i} - \boldsymbol{B}_{\textit{measure},i}|}{\sigma_i} \right)^2$$

- > using simulated field for fitting
- > keeping the grid orientation but finer grid \Rightarrow {x, y, z}
- > rotating PMS in simulation $\Rightarrow \{\beta_x, \beta_y, \beta_z\}$

> rotating simulated field around $\hat{e}_z \Rightarrow \alpha_z$

$$\chi^2 = \sum_{i}^{N} \left(\frac{|\boldsymbol{B}_{\textit{sim},i} - \boldsymbol{B}_{\textit{measure},i}|}{\sigma_i} \right)^2$$

- > using simulated field for fitting
- > keeping the grid orientation but finer grid $\Rightarrow \{x, y, z\}$
- > rotating PMS in simulation $\Rightarrow \{\beta_x, \beta_y, \beta_z\}$
- > rotating simulated field around $\hat{e}_z \Rightarrow \alpha_z$
- > offsets and $lpha_z$ are not simulated; reduction of simulations

$$\chi^2 = \sum_{i}^{N} \left(\frac{|\boldsymbol{B}_{\textit{sim},i} - \boldsymbol{B}_{\textit{measure},i}|}{\sigma_i} \right)^2$$

- > using simulated field for fitting
- > keeping the grid orientation but finer grid $\Rightarrow \{x, y, z\}$
- > rotating PMS in simulation $\Rightarrow \{\beta_x, \beta_y, \beta_z\}$
- > rotating simulated field around $\hat{e}_z \Rightarrow \alpha_z$
- > offsets and α_z are not simulated; reduction of simulations

Fitting results

> Measured Grid: $(50 \times 50 \times 50) \, \mu m^3$

> Simulated Grid: $(16.7 \times 16.7 \times 12.5) \,\mu\text{m}^3$

> Measured Grid:

 $(50 \times 50 \times 50) \, \mu m^3$

> Simulated Grid: $(16.7 \times 16.7 \times 12.5) \,\mu\text{m}^3$

	Sol1	Sol2	Ideal
x [mm]	0.0333	-0.0333	0.0333
y [mm]	-0.0333	0	-0.0167
z [mm]	-0.0375	-0.025	-0.0375
α_x [rad]	10^{-4}	0	$2 imes 10^{-4}$
α_y [rad]	0.0033	0.0032	0.0033
α_{z} [rad]	0	$17\pi/16$	0
β_z [rad]	0.024	0.024	0.031
$\tilde{\chi}^2$	0.439	0.460	0.460

