Laser pulse shaping for high gradient accelerators

F. Villa on behalf of SPARC_LAB collaboration

Outline

- Introduction
- Pulse shaping
- Multibunch configurations
- Hollow beams
- Conclusions

SPARC

PWFA with comb beam and velocity bunching

- Laser-comb: multiple electron bunches produced directly at the cathode
 - Accurate laser pulses delay and duration is fundamental
 - Easy setup, (un)balancing (charge ramps...)

• Velocity bunching for bunch compression Distance and duration tuning by moving linac 1st section phase Different approach with respect to other multi-bunches schemes

Ferrario, M., et al "Laser comb with velocity bunching: Preliminary results at SPARC." NIM 637.1 2011 S43-S46.

Pulse shaping with birefirngence

• Birefringent crystal technique:

– Fast/slow axes different time propagation $\Delta T = (n_e - n_o) L/c$

Cons:

Fixed delays

Pulse pairing

- Pros
- Easy and reliable
- Easy to stack

n crystals = 2ⁿ pulses

A. K. Sharma et al., *Phys. Rev. ST Acc. Beam*, n. 12, p. 033501, 2009 C. Jing et al., *Phys. Rev. ST Acc. Beam*, vol. 14, p. 021302, 2011

Pulse shaping with splitting

- Interferometer configuration:
 - Pros:
 - Very flexible
 - Cons:
 - Transverse alignment
 - Complex setup for more

than 2 pulses

C. W. Siders et al., *Appl. Opt.,* vol. 37, n. 22, p. 5302, 1998 Y. Ding et al., *Phys. Rev. ST Acc. Beam*, vol. 13, p. 060703, 2010

Flexible pulse shaping

Witness delay fine tuning

Equal pulse separations

1.1 ps 1.0 ps

Ramped beams

Laser longitudinal profile

A. Cianchi et al., Phys. Rev. ST Acc. Beam, vol. 18, p. 082804, 2015.

SPARC

A. Mostacci et al., SPIE Optics + Optoelectronics, Prague, 2015.

Hollow beam: Why hollow?

Witness cross the driver during compression:
 – Larger emittance and longer compressed pulse

Hollow beam: Why hollow?

Witness cross the driver during compression:
 – Larger emittance and longer compressed pulse

Hollow beam requirements

Hollow beam laser shaping scheme

Hollow beam laser shaping scheme

Conclusion

- Pulse shaping:
 - Control of delays between pulses
 - Fine tuning of each pulse amplitude (charge)
 - Flexibility for different configurations
- Hollow beams:
 - new possibilities for PWFA

SPARC

Thank you!

• Sparc_lab collaboration

- D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F.
 Bisesto, M. Castellano, E. Chiadroni, M. Croia, D. Di
 Giovenale, M. Ferrario, G. Di Pirro, R. Pompili, S. Romeo, J.
 Scifo, V. Shpakov, B. Spataro, C. Vaccarezza (INFN, Frascati)
- A. Cianchi (Tor Vergata University of Rome)
- F. Filippi, F. Giorgianni, A. Giribono, S. Lupi, A. Marocchino,
 F. Massimo, F. Mira, A. Mostacci, M. Petrarca (Sapienza University of Rome)
- F. Ciocci, A. Petralia (ENEA, Frascati)
- A. Bacci, V. Petrillo, A.R. Rossi, L. Serafini (INFN, Milano)

