ASSESSMENT OF OPPORTUNITY FOR
A COLLINEAR DIELECTRIC WAKEFIELD ACCELERATOR FOR A SOFT X-RAY FEL FACILITY

Many hurdles to overcome as you will see…

Alexander Zholents, ANL

EAAC Workshop, Elba Island, September 14, 2015
Collaborators

S. Doran, W. Gai, G. Ha, C. Li, J. Power
Argonne National Laboratory, HEP

R. Lindberg, N. Strelnikov, Y. Sun, E. Trakhtenberg, A. Zholents
Argonne National Laboratory, APS

C. Jing, A. Kanareykin
Euclid Techlabs

D. Shchegolkov, E. Simakov
Los Alamos National Laboratory

P. Piot
Northern Illinois University/Fermilab

C.X. Tang
Tsinghua University

S.S. Baturin
St. Petersburg Electrotechnical University LETI
Collinear acceleration in a hollow dielectric channel or corrugated wall waveguide

- Low cost device (likely)
- Potential for:
 - high field gradients
 - high wall plug power efficiency
 - high bunch repetition rate

A concept of a multi-user FEL facility

Based on:
High repetition rate SRF linac

Collinear Wakefield Accelerator (CWA)

- Low E spreader
- Up to 100 MV/m
- CWA imbedded in FODO lattice
- Tunable $E \sim$ a few GeV
- Tunable $I_{pk} > 1$ kA
- Rep. rate ~ 50 kHz/FEL

Compact Inexpensive Flexible
Beam by design: beam shaper and why we need it

Road map to a high energy gain acceleration: transformer ratio\(^1\)

\[
R = \frac{E^+}{E^-} = \frac{\text{(Maximum field behind the drive bunch)}}{\text{(Maximum field inside the drive bunch)}}
\]

Goal is to extract maximum energy from drive bunch, up to 80%

Drive bunch shaping using emittance exchange EEX*

Argonne Wakefield Accelerator (AWA)

After EEX

Transverse particle distribution after mask

- ~25 kW is deposited on mask at low energy 5 MeV, i.e. below threshold energy for isotope production

Talk by J. Power, this workshop

Drive bunch shaping using photocathode laser \(^1\)

... was proposed to remove significant quadratic energy chirp at the end of the FERMI FEL linac

2) Zholents and Zolotorev, ANL/APS/LS-327, (2011)
Drive Bunch Beam Breakup Instability

Examples of longitudinal and transverse wakefield functions

Cumulative collective instability arises from continuous exposure of tail electrons to transverse wake field*

Balakin-Novokhatsky-Smirnov (BNS) damping of BBU

- Use FODO
- Produce “chirp” in the betatron tune along the electron bunch using the energy “chirp”, and
- Force tail to oscillate faster than head, thus averaging the impact of transverse wake fields.

Illustration for Dielectric Wakefield Accelerator (DWA)

- **Transverse oscillation of particles of a chirped beam**
- **Particles of different energies have different oscillation periods in the FODO lattice**

Initial energy chirp ~15 % (peak-to-peak)
Maximum energy gain is defined by quadrupole strength

Wakefield accelerator

$$W_z \sim \frac{Q}{a^2}$$

$$W_\perp \sim \frac{Q}{a^3}$$

Drive

Main

Tapered quadrupole gradient

Quadrupole wiggler

Two quadrupoles back-to-back

NdFeB

Soft iron

5 cm

N. Strelnikov, I. Vasserman

Dielectric channel imbedded into quadrupole wiggler

High gradient permanent magnet quad

- Bore radius = 1.5 mm.
- Peak gradient = 0.96 T/mm.
- Gradient integral / length = 0.9 T/mm.
- Weight = 300 g.
- Magnetic force between top and bottom parts = 30.5 kg.

the drive beam tail decelerates more, develops more lagging, and sees the wake’s accelerating field.
Problem mitigation

- Move main bunch to second maximum *(can be difficult if done using the mask)*

- Make adaptive frequency channel and always keep main bunch at or near to the maximum *(easy)*

- Use drive bunch with higher energy *(affects facility cost and energy efficiency)*

\[\omega_1 < \omega_2 < \omega_3 \]
Result of tracking for 8nC drive and 250 pC main bunch

After 2 m \(E_{in}=400\) MeV

\[
\begin{align*}
\rho &= \gamma \beta \\
TM_{01} \text{ freq } &= 299.7 \text{ GHz}
\end{align*}
\]

\[
\begin{align*}
\text{current} & \quad \text{wake} \\
z (\text{mm}) & \\
t
\end{align*}
\]

After 20 m \(E_{out}=2.0\) GeV

\[
\begin{align*}
\rho &= \gamma \beta \\
TM_{01} \text{ freq } &= 336 \text{ GHz}
\end{align*}
\]

\[
\begin{align*}
\text{current} & \quad \text{wake} \\
z (\text{mm}) & \\
t
\end{align*}
\]
Tolerances

- **Misalignment of FODO quadrupoles (or trajectory)** < 1 µm
 - 5 µm initial orbit offset
 - Random misalignment rms errors
 - 2 µm
 - 1.75 µm
 - 1.5 µm
 - 1.25 µm
 - 1 µm
 - 0.75 µm
 - No particle losses in the case of correlated variation with amplitude of 2 µm and period > 0.3 m.

- **Straightness of the dielectric channel waveguide**: better than 10 µm
 - Maximum amplitude is 10 µm and the period is varied

Figure:
- **Lost particles (%)** vs. **z (m)**
 - 0 to 80% on the y-axis
 - 0 to 25 m on the x-axis

Histogram:
- **Particle loss (%) at 20 m**
 - Period (cm) on the x-axis
 - 0 to 40% on the y-axis
FEL simulations (illustration)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulator period, cm</td>
<td>1.8</td>
</tr>
<tr>
<td>Undulator parameter, K</td>
<td>1.0</td>
</tr>
<tr>
<td>Energy, GeV</td>
<td>1.88</td>
</tr>
<tr>
<td>Charge, pC</td>
<td>250</td>
</tr>
<tr>
<td>Current, kA</td>
<td>3</td>
</tr>
<tr>
<td>Emitt, µm</td>
<td>1</td>
</tr>
<tr>
<td>RMS energy spread, %</td>
<td>0.3</td>
</tr>
<tr>
<td>Pierce parameter</td>
<td>0.01</td>
</tr>
<tr>
<td>X-ray wavelength, nm</td>
<td>1</td>
</tr>
<tr>
<td>Peak power, GW</td>
<td>5</td>
</tr>
<tr>
<td>Bandwidth, %</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Graphs:
- Energy vs. Undulator length
- Current vs. ct
- Power vs. t (fs)
- X-ray wave length vs. ct
- Bandwidth vs. Delta omega over omega
The initial goal is to build a 1 m long accelerator unit and test it in LEUTL tunnel using APS injector linac.

A concept of a dual quad module*

*) courtesy of S. Doran
Summary

- High repetition-rate, soft X-ray FEL user facility
 - 10 CWAs linacs driven by a single 400 MeV SRF linac
 - 10 FEL lines @ 50 kHz bunch repetition rate
 - Compact, inexpensive, and flexible

- Progress
 - Drive bunch shaping (triangular + quadratic component)
 - Control of beam breakup instability
 - Quadrupole wiggler, adaptive frequency channel
 - Small “main bunch” energy spread

- Future development
 - improving transmission efficiency through the mask – critical
 - space charge effects
 - beam-based trajectory correction - potential showstopper
 - modular design: quadrupole wiggler, vacuum chamber, cooling - critical
 - break sections: BPMs, rf couplers, correctors, etc.
Thank you for your attention