

Review on Betatron and Compton sources from Laser Plasma Accelerators

Kim TA PHUOC

- LOA, ENSTA ParisTech CNRS Ecole polytechnique Université Paris-Saclay PALAISEAU, France
- ELI Beamlines, Praha, Czech Republic

Why do we need novel x-ray sources ?

Multidisciplinary, novel and fundamental applications

Femtosecond X-ray sources from LPA

	2000	2005	2010	2015
10 eV	Nonlinear Thomson sca S-Y Chen, Nature 1998	ittering		
100 eV	Nonlinear Thomson K.Ta Phuoc et al, PRL 2003	scattering		
l keV	Betatron radia	Betatron as ation fs x-ray diffraction	s a diagnostic for LPA fs x-r	ay absorption
	A. Rousse et al, PRL 2004	⁰⁴ Phase c	constrast imaging	
10 keV	Thom H. Schwoe	son backscattering		
100 keV		Betatron ra S. Kneip et al, Nati	adiation ure Phys 2010	aphy
I MeV			Thomson backscatter (single beam method) <i>K.Ta Phuoc et al, Nature Phot.</i> 2012	ing Radiography
10 MeV			Thomson bac (two beams metho <i>C. Liu, Opt Lett, 2014</i>	kscattering

Outline

Betatron source

- Principle
- Experimental characterization of the source
- Applications experiments
- Recent progresses

Compton source

- Principle
- Experimental characterization of the source
- Applications experiments

Summary, conclusion & perspectives

Radiation from relativistic electrons

Sources based on moving charge radiation

$$\frac{d^{2}I}{d\omega d\Omega} = \frac{e^{2}}{4\pi^{2}c} \left| \int_{-\infty}^{+\infty} e^{i\omega[t-\vec{n}.\vec{r}(t)/c]} \frac{\vec{n} \times [(\vec{n}-\vec{\beta}) \times \dot{\vec{\beta}}]}{(1-\vec{\beta}.\vec{n})^{2}} dt \right|^{2}$$

Radiated energy

Transverse acceleration is necessary to efficiently produce radiation

Relativistic electron emits order of magnitude more radiation than non relativistic electron

Radiation is emitted in the direction of the electron velocity

Radiation is emitted at the frequency $\boldsymbol{\omega} \sim 2\boldsymbol{\gamma}^2\boldsymbol{\omega}_e$ and harmonics. $\boldsymbol{\omega}_e$ is the frequency of the electron motion. X-ray radiation can be produced by wiggling electron relativistic at a frequency far below x-ray range.

Radiation from relativistic electrons

Radiation from relativistic electrons

laser

- Compton scattering

Betatron radiation

This is an appropriate motion to produce x-ray beams

➤ To calculate the radiation features we first need to calculate the electron orbit

Betatron radiation: Electron orbit

$$\frac{d\boldsymbol{p}}{dt} = \boldsymbol{F}_{\parallel} + \boldsymbol{F}_{\perp} = -\frac{m\omega_p^2}{2}\zeta \hat{\boldsymbol{z}} - \frac{m\omega_p^2}{2}(x\hat{\boldsymbol{x}} + y\hat{\boldsymbol{y}})$$

elevation ______ wiggling

The spatial period of the electron orbit is:

$$\lambda_{u}(t) = \sqrt{2\gamma(t)}\lambda_{p},$$

$$\lambda_{u}[\mu m] = 4.72 \times 10^{10} \sqrt{\gamma/n_{e}} [cm^{-3}],$$

$$\lambda_{u} \sim 150 \text{ microns},$$

and the K parameter is:

$$K(t) = r_{\beta}(t)k_{p}\sqrt{\gamma(t)/2},$$

$$K = 1.33 \times 10^{-10}\sqrt{\gamma n_{e}}[\text{cm}^{-3}]r_{\beta}$$

$$K \sim 10$$

Betatron radiation features: for one electron

Example for $a_0=2$, $n_e=10^{19}$ cm⁻³ Spectrum, critical energy $\hbar\omega_{c}[\text{eV}] = 5.24 \times 10^{-21} \gamma^{2} n_{e}[\text{cm}^{-3}] r_{\beta}[\mu\text{m}]$ ~9 keV Photon number / electron $N_{\gamma} = 3.31 \times 10^{-2} K$ for $K \gg 1$. ~0.3 photon / electron Spatial distribution $\vartheta = K/\gamma$ $\varphi = I/\gamma$ ~30 mrad Source size is a few microns

Duration is a few femtoseconds

Typical Betatron experiment

Angular distribution

loa

5 shots

Pointing fluctuations 5-10 mrad

-60

Spectrum measurement

Spectral resolution : few keV Spectral range : keV to hundreds keV

Spectral resolution : 100 eV Spectral range : up to 30 keV

Spectral resolution : few eV Spectral range : 100s eV to few keV

Betatron radiation spectrum (10sTW class lasers)

Critical energy in the few keV range

Flux is about 10⁸ photons / Shot

Betatron radiation spectrum (100sTW class lasers)

loa

Critical energy of about a 10 keV

Photons/0.1%BW/sr/shot

Source size measurement

-> Source size is a crucial parameter for imaging applications

Source size measurement

Source size is a crucial parameter for imaging applications

Source size is about 1-2 microns
It is usually limited by the resolution of the measurement

- 10⁵ photons/shot/0.1% BW @ 1 keV
- 10⁸⁻⁹ photons/shots
- collimated: 10's mrad
- ultrashort: <10 fs
- broadband: I-50 keV
- Micron source size: I 2 microns

Simple to produce, collect and use for applications.

- Imaging electrons orbits
- Betatron as a diagnostic for LPA
- Single shot phase contrast imaging
- Femtosecond x-ray diffraction and absorption

- Production of Stable and polarized Betatron radiation
- Decoupling accelerator and wiggler

Transverse electrons orbits in the wakefield cavity

Betatron radiation can be used to determine transverse electrons orbits

We assume an helical orbit

z (μm) ² ¹ ⁰ ⁻¹ ⁻² ¹⁰⁰ ²⁰⁰ ³⁰⁰ ²⁰⁰ ³⁰⁰ ⁴⁰⁰ ⁻² ² ¹⁰⁰ ²⁰⁰ ³⁰⁰ ⁴⁰⁰ ⁻² Transverse electron orbit

loa

Transverse electrons orbits in the wakefield cavity

Betatron radiation can be used to determine transverse electrons orbits

We assume an helical orbit

Transverse electron orbit

loa

Corresponding x-ray beam profile

X-ray beam profiles are signatures of transverse electrons orbits

Transverse electrons orbits in the wakefield cavity

loa

X-ray radiation is emitted in the direction of the electron velocity

X-ray beam profile allows to estimate the transverse e- beam size

Estimation of the transverse e- beam size

 Fit of the evolution of the x-ray signal as a function of the electron energy (quasi-monoenergetic electrons)

→ Fit of the measured x-ray spectrum

loa

 $\sigma_{x} = 0.23$ microns RMS

 $\sigma_{x} = 0.28$ microns RMS

Absorption and phase constrast radiography

Betatron x-ray beam

loa

x-ray CCD

- Betatron has the good features for this application:
- High brightness (10²⁰ ph/s/mm²/mrad²/0.1%bw @1 keV)
- Micron source size
- Coherence length is a few tens microns at 1 m and 5 keV

Absorption and phase constrast radiography

- High brightness (10²⁰ ph/s/mm²/mrad²/0.1%bw @1 keV)
- Micron source size
- Coherence length is a few tens microns at 1 m and 5 keV

Radiograph of a bee (Phase contrast)

Bone tomography (constrast absorption)

Betatron x-ray beam

x-ray CCD

Femtosecond x-ray diffraction: pump-probe experiment

Femtosecond x-ray diffraction: Non thermal melting (InSb)

Delay Δt (ps)

Development of fs x-ray absorption experiments

→ X-ray beam profile in pure He is fluctuating

Stable and polarized Betatron radiation using gas mixture

→ X-ray beam profile in 99% He + 1% Nitrogen is very stable

- → Pointing stability is 10% of the beam diameter
- → Beam shape is 100% reproducible

θx (mrad)

→ X-ray beam profile in 99% He + 1% Nitrogen

- → Pointing stability is 10% of the beam diameter
- → Beam shape is 100% reproducible

Shot to shot fluctuations of the critical energy and peak flux

Energy stability (standard deviation) is about 10% of the mean energy
 Energy stability (standard deviation) is about 15% of the mean flux

X-ray radiation is polarized & polarization

- → Polarization degree is about 80%
- It is tuned by changing laser polarization (circular polarization produces circular beams)

Decoupling accelerator and wiggler

LPA is set to produce good quality ebeam

100

-30 -20 -10 0 10 20 30

Decoupling accelerator and wiggler

x-ray beam

mrad

Produce high energy and high quality electrons

Outline

Betatron source

- Principle
- Experimental characterization of the source
- Applications experiments
- Recent progresses

Compton source

- Principle
- Experimental characterization of the source
- Applications experiments

Summary, conclusion & perspectives

X-ray Compton scattering: Principle

Modest electrons energies can produce high energy x-rays

 $20 \text{ MeV} \longrightarrow 10 \text{ keV}$ $65 \text{ MeV} \longrightarrow 100 \text{ keV}$ $200 \text{ MeV} \longrightarrow 1000 \text{ keV}$

X-ray Compton scattering: Test particle simulation

Electrons orbits

 $\gamma \approx 200$ $\lambda_u \approx 1 \ \mu m$

X-ray Compton scattering: Test particle simulation

X-ray Compton scattering: two laser beams method

X-ray Compton scattering: two laser beams method

Spectrum and beam profile

X-ray Compton scattering: two beams method

Production of narrow band radiation

 Central x-ray energy can be tuned by tuning electron energy

loa

X-ray Compton scattering: two beams method

Narrow band x-rays from a stable and tunable LPA (shock injection)

loa

single shots

X-ray Compton scattering: Single beam method

loa

X-ray Compton scattering: Single beam method

loa

Divergence is about 20 mrad

the flux is about 10⁸ photons / shot

X-ray Compton scattering: Single beam method

Central x-ray energy can be tuned by tuning electron energy

Source size

Micron order transverse source size

High energy x-ray radiography

- 10⁴ photons/shot/0.1% BW @ 100 keV
- 10⁸⁻⁹ photons/shot
- collimated: 10's mrad
- ultrashort: 10's fs
- broadband: 10s keV to few MeV or narrow band tunable
- small source size: I 2 microns

Collection of the high energy x-ray beam will be much more complicated

	Nonlinear Thomson scattering	Betatron	Compton scattering
Electron energy (MeV)	few 10s	few 100s	few 100s
λ_u (microns)	10	100	1
K	10	10	1
Radiation energy (keV)	0.1	1-10	100-1000
θ	100 mrad	10 mrad	10 mrad
N photons	10 ⁹	10 ⁸	10 ⁸

Conclusion

Nonlinear Thomson scattering: - 100 eV - 1 keV

- Large divergence
- femtosecond

- Betatron radiation:

- Up to several 10s keV
- Low divergence
- femtosecond
- micron source size

- Compton:

- Up to several I MeV
- Low divergence
- femtosecond
- micron source size

loa

- Betatron radiation:

Control of the electrons orbits and increase the x-ray energy. Schemes based on density modulations are promising.

- All optically driven Compton source:

Produce x-ray beams with smaller laser at higher repetition rates in the 10-20 keV range

Reduce the spectral bandwidth (using for example beam transport)

- Applications:

Ultrafast x-ray absorption

High energy phase contrast radiography.

Betatron/Compton @ LOA is the work of

Sebastien CORDE, Andreas DOEPP, Cedric THAURY, Emilien GUILLAUME, Julien GAUTIER, Victor MALKA, Antoine ROUSSE, Stephane SEBBAN, Romuald FITOUR, Felicie ALBERT, Rahul SHAH, Jean Philippe GODDET, Amar TAFZI, Pascal ROUSSEAU, Jean Philippe ROUSSEAU, Benoit MAHIEU, Antoine DOCHE.

Reference: Femtosecond X-rays from laser plasma accelerators S.Corde, et al. Review of Modern Physics, 2013