

Diagnostics and dosimetry solutions for laser-driven ion beams: preliminary results

Giuliana Milluzzo

(on behalf of the ELIMED collaboration)

2nd European Advanced Accelerator Concepts Workshop

La Biodola, 13-19 September 2015

gmilluzzo@lns.infn.it

The ELIMED section at the ELIMAIA beamline

The ELIMED section at the ELIMAIA beamline

gmilluzzo@lns.infn.it

The ELIMED section at the ELIMAIA beamline

gmilluzzo@lns.infn.it

Diagnostics of laser-driven ion beams

High pulsed ion beams High dose-rate High electromagnetic pulse Very fast signal

Diagnostics of laser-driven ion beams

High pulsed ion beams High dose-rate High electromagnetic pulse Very fast signal

Very fast detectors in Time Of Flight configuration

Special solutions for emittance measurements using a pepper pot device

Diagnostics of laser-driven ion beams

High pulsed ion beams High dose-rate High electromagnetic pulse Very fast signal Very fast detectors in Time Of Flight configuration

Special solutions for emittance measurements using a pepper pot device

gmilluzzo@lns.infn.it

ToF detectors for ELIMAIA

pCVD diamond:

Substrate thickness: 100 µm Electrode size: 3 mm diameter Detector capacitance: 4 pF Bias voltage: 200 V

sCVD diamond

Substrate thickness: 500 µm Substrate size: 4.5 mm x 4.5 mm Detector capacitance: 3 pF Bias voltage: 400 V

ToF detectors for ELIMAIA

pCVD diamond:

Substrate thickness: 100 µm Electrode size: 3 mm diameter Detector capacitance: 4 pF Bias voltage: 200 V

Special RF shielding

Housing: Box size: 55 mm x 55 mm x 15 mm Material: Alluminium with extra RF shielding

sCVD diamond

Substrate thickness: 500 µm Substrate size: 4.5 mm x 4.5 mm Detector capacitance: 3 pF Bias voltage: 400 V

ToF detectors for ELIMAIA

pCVD diamond:

Substrate thickness: 100 µm Electrode size: 3 mm diameter Detector capacitance: 4 pF Bias voltage: 200 V

Special RF shielding

Housing: Box size: 55 mm x 55 mm x 15 mm Material: Alluminium with extra RF shielding

sCVD diamond Substrate thickness: 500 μm Substrate size: 4.5 mm x 4.5 mm Detector capacitance: 3 pF

Bias voltage: 400 V

Linear response for very high intensity Radiation hardness

Excellent signal-to-noise ratio Good time resolution

gmilluzzo@lns.infn.it

ToF diagnostics prototypes

Silicon Carbide (SiC) 4H-SiC Schottky

Maximum thickness: 43.7 μm Active area : 4 mm² Energy band gap: 3.26 eV Bias voltage: 500 V

M. De Napoli et al. NIM A 600 (2009) 618–623, NIM A 572 (2007) 831–838, NIM A 608 (2009) 80–85

Single crystal Diamond Detector

Maximum thickness: 500 μm Active area : 4.5x4.5 mm² Energy band gap: 5 eV Bias voltage: 400 V

N.Randazzo et al. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE10.1109/NSSMIC. 2012.6551450

gmilluzzo@lns.infn.it

Tests with SiC and Diamond detectors prototypes @ TARANIS facility, Queen's University (UK)

Laser parameters

Power: 20 TW Intensity: I 0¹⁹ W/cm² Energy on target:7 J Focal spot diameter: 5um Time pulse: 800 fs wavelength: 1053 nm

Experimental setup

I 2 um Gold Target

qmilluzzo@Ins.infn.it

Tests with SiC and Diamond detectors prototypes @ TARANIS facility, Queen's University (UK)

Laser parameters

Power: 20 TW Intensity: I 0¹⁹ W/cm² Energy on target:7 J Focal spot diameter: 5um Time pulse: 800 fs wavelength: 1053 nm

gmilluzzo@lns.infn.it

Tests with SiC and Diamond detectors prototypes @ TARANIS facility, Queen's University (UK)

Laser parameters

Power: 20 TW Intensity: I 0¹⁹ W/cm² Energy on target:7 J Focal spot diameter: 5um Time pulse: 800 fs wavelength: 1053 nm

gmilluzzo@Ins.infn.it

Tests with SiC and Diamond detectors prototypes @ TARANIS facility, Queen's University (UK)

Laser parameters

Power: 20 TW Intensity: I 0¹⁹ W/cm² Energy on target:7 J Focal spot diameter: 5um Time pulse: 800 fs wavelength: 1053 nm

gmilluzzo@lns.infn.it

Tests with SiC and Diamond detectors prototypes @ TARANIS facility, Queen's University (UK)

Laser parameters

Power: 20 TW Intensity: I 0¹⁹ W/cm² Energy on target:7 J Focal spot diameter: 5um Time pulse: 800 fs wavelength: 1053 nm

Tests with SiC and Diamond detectors prototypes @ TARANIS facility, Queen's University (UK)

Laser parameters

Power: 20 TW Intensity: I 0¹⁹ W/cm² Energy on target:7 J Focal spot diameter: 5um Time pulse: 800 fs wavelength: 1053 nm

Deconvolution

Deconvolution

30

TOF detectors,

Deconvolution

Queen's University Belfast

Nuclear track detectors CR39s

Thursday, September 17, 15

2.5

3

30

TOF detectors,

CR39s

Deconvolution

30

TOF detectors,

CR39s

Nuclear track detectors CR39s

High dose-rate Low reproducibility shot to shot Very short and intense ion pulse

High dose-rate Low reproducibility shot to shot Very short and intense ion pulse **Dose-rate independent absolute dosimeter**

Multi-gap ionization chambers for pulsed beams for online dose measurements

High dose-rate Low reproducibility shot to shot Very short and intense ion pulse **Dose-rate independent absolute dosimeter**

Multi-gap ionization chambers for pulsed beams

for online dose measurements

gmilluzzo@lns.infn.i

Faraday Cup for absolute dosimetry **Sample irradiation** Multi-gap transmission system ×

High dose-rate Low reproducibility shot to shot Very short and intense ion pulse **Dose-rate independent absolute dosimeter**

Multi-gap ionization chambers for pulsed beams

for online dose measurements

gmilluzzo@lns.infn.it

Faraday Cup for absolute dosimetry SIS FC **Multi-gap transmission** (🗲 📢

High dose-rate Low reproducibility shot to shot Very short and intense ion pulse Dose-rate independent absolute dosimeter

Multi-gap ionization chambers for pulsed beams for online dose measurements

Electric field along the beam axis

Experimental setup

CATANA facility

Experimental setup

CATANA facility

gmilluzzo@Ins.infn.it

Experimental setup

CATANA facility

Beam characteristics

62 MeV proton beam Very flat spatial profile Beam spot diameter 20 mm

0.24

Charge dose linearity

0.23 0.22 15.0.21 NO 0.2 FC response independent on high beam current 0.19 0.18 0.17^L 0.2 1.6 1.2 1.4 0.4 0.6 0.8 1.8 Beam current Vsf [Volt]

Investigations at low beam current will be soon performed

gmilluzzo@lns.infn.it

gmilluzzo@lns.infn.it

ToF prototypes tests@TARANIS

ToF prototypes tests@TARANIS

ToF spectrum analysis procedure for particle energy and fluence measurements

ToF prototypes tests@TARANIS

ToF spectrum analysis procedure for particle energy and fluence measurements

Faraday Cup characterization with conventional proton beams

ToF prototypes tests@TARANIS

Faraday Cup characterization with conventional proton beams ToF spectrum analysis procedure for particle energy and fluence measurements

Investigation on the FC response in agreement with literature

ToF prototypes tests@TARANIS

Faraday Cup characterization with conventional proton beams ToF spectrum analysis procedure for particle energy and fluence measurements

Investigation on the FC response in agreement with literature

Characterization of the *pCVD and sCVD* with conventional proton beams@LNS and with laser-accelerated proton beams @VULCAN (RAL) (UK)

ToF prototypes tests@TARANIS

Faraday Cup characterization with conventional proton beams ToF spectrum analysis procedure for particle energy and fluence measurements

Investigation on the FC response in agreement with literature

Characterization of the *pCVD and sCVD* with conventional proton beams@LNS and with laser-accelerated proton beams @VULCAN (RAL) (UK)

FC charge measurements with the peculiar inner electrode with conventional proton beams@LNS

ToF prototypes tests@TARANIS

Faraday Cup characterization with conventional proton beams ToF spectrum analysis procedure for particle energy and fluence measurements

Investigation on the FC response in agreement with literature

Characterization of the *pCVD and sCVD* with conventional proton beams@LNS and with laser-accelerated proton beams @VULCAN (RAL) (UK)

FC charge measurements with the peculiar inner electrode with conventional proton beams@LNS

FC dose measurements with laser-driven proton beams

Thank you for your attention