

Ultra-compact all-optical FELs and Compton sources

Alexander Debus Institute for Radiation Physics Helmholtz - Zentrum Dresden – Rossendorf (HZDR)

EAAC, La Biodola, Isola d'Elba September 13-19th, 2015

EAAC | September 13-19th 2015 | Dr. Alexander Debus I Institute for Radiation Physics I www.hzdr.de

Optical free-electron lasers (OFELs)

- EUV to X-rays : 100eV 10 keV
- Coherent light source
- 10¹⁰ 10¹² photons per pulse at sub-% bandwidth
- Vision of a compact (X-ray) FEL, no experimental realization yet.

Compton sources

- Potentially most brilliant source at hard X-rays : keV - MeV
- Incoherent source
- Narrow bandwidth @ %-level, or broad bandwidth, tunable in wavelength
- Experimental realizations

 (linacs and LWFA) are available,
 but more photons per shot desired.

Member of the Helmholtz Association

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de

Optical Free Electron Lasers

Optical free-electron laser (OFELs) – shorter FEL wavelengths while using less electron energy on table-top?

Even if GeV-scale LWFA accelerators are table-top, X-ray FEL undulators usually are not !

 Optical undulators provide µm-scale undulator lengths at high fields.

$$\lambda_{FEL} = \frac{\lambda_{laser}(1+a^2/2)}{2\gamma^2}$$

 Optical free-electron lasers additionally drive an electron beam instability and thus have to meet very different requirements.

The 0.1nm FEL at SLAC (http://lcls.slac.stanford.edu)

Laser-plasma driven free-electron lasers using magnetic undulators can be compact at EUV to soft x-rays.

Member of the Helmholtz Association

Optical free-electron laser (OFELs) – shorter FEL wavelengths while using less electron energy on table-top?

- Optical lasers provide µm-scale undulator lengths at high fields.
- However, yields of existing Compton sources

 $10^7 - 10^8 \frac{\text{photons}}{\text{shot}}$

indicate difficulties in realization.

Challenges for OFELs

- Interaction distances needs to be long
 Else the FEL instability cannot develop.
- High energy efficiency
 Else too much (laser) energy required.
- Avoid ultra-high intensities a₀>>1
 Else impractical for real-world lasers.
- **One needs**: An optical undulator, which is both long and narrow.

Member of the Helmholtz Association

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de

Early "head-on" OFEL designs show undulator wavelengths beyond optical wavelengths

Petrillo et. al., PRSTAB 11, 070703 (2008)

undulator laser CO₂ laser, λ =10µm, ~18.7ps, ~17J, 40µm spot size, a₀=0.8

electrons

28 MeV ; >20 kA LWFA bunch ; 0.4% energy spread

~10fs duration ; <0.3 mm mrad transverse emittance slices

"Head-on" OFELs do not scale to the hard X-ray range

- High-power, flattop CO₂ laser on ps-scale at <1.2% field stability is challenging.
- High photon emission recoil instantly kicks electrons out of FEL resonance.

Going to sub-nm X-rays not possible for "head-on" designs.

Petrillo et. al., PRSTAB 11, 070703 (2008)

240 MW soft X-rays @ 1.35 nm

undulator laser

CO₂ laser, λ =10µm, ~18.7ps, ~17J, 40µm spot size, a₀=0.8

electrons

28 MeV ; >20 kA LWFA bunch ; 0.4% energy spread

~10fs duration ; <0.3 mm mrad transverse emittance slices

Traveling-Wave Thomson-Scattering (TWTS) in a nutshell

Using pulse-front tilted petawatt lasers in side scattering geometries for arbitrarily long interaction distances

laser pulse

Traveling-Wave Thomson-Scattering (TWTS) in a nutshell Using pulse-front tilted petawatt lasers in side scattering geometries for arbitrarily long interaction distances

The undulator wavelength of a TWTS OFEL is scalable

Pulse front tilt of half the interaction angle ensures continuous overlap independent of interaction angle.

$\frac{\lambda_{laser}(1+a^2/2)}{2\gamma^2(1-\cos\phi)}$ $\lambda_{FEL} = \cdot$ $\alpha_{tilt} = \phi/2$ 1000 -ray Har 100 8-20°, NU 13001m X-ray Soft E_{phot} [keV] 10 1keV ≈1nm EUV 0.1 100 10000 1000 E_e [MeV]

Member of the Helmholtz Association

Note

The number of laser periods seens by an electron exceeds the periods of the laser pulse duration.

Traveling Wave-Thomson Scattering OFEL in experiment

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de

Design 1 13.5nm Flash-type TWTS OFEL at ELBE energy

Parameter	EUV TWTS OFEL ELBE@HZDR	FLASH conventional FEL	
Scattered wavelength [nm]	13.5	13.5	200
Interaction angle [deg]	6.6	-	P _{peak} = 175 MW
Undulator period [mm]	0.15	27.3	L _{sat} = 5.2 cm
Electron energy [MeV]	40	700	
Peak current [kA]	2.5	2.5	
Norm. emittance [mm mrad]	1.0	1.45	P tot
Rel. energy spread	0.2%	0.2%	50-
Undulator parameter a_0/K	0.5	1.2	ELBE EUV
Laser power [TW]	995	-	
Gain length [cm]	0.35	250	d [cm]
Interaction distance [m]	0.052	27	Simulation of ELBE EUV
Peak power [MW]	175	10000	TWTS OFEL based on analytic 1.5D TWTS OFEL

Traveling-wave Thomson Scattering (**TWTS**) OFELs can be realized with state-of-the-art accelerators and lasers.

Member of the Helmholtz Association

equations

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de

Design 2

Ultra compact TWTS OFEL using LWFA electrons

TWTS+LWFA offers inherent synchronization of laser and electrons.

Electron beam trapping could drastically reduce laser power requirements

ϵ_n for FEL instability

$\boldsymbol{\epsilon}_n$ for maintaining focus

Emittance and laser power landscape for an 0.15nm X-ray OFEL

Optical lattices provide electron beam trapping

- Two counter propagating TWTS laser beams provide an optical lattice.
- Electrons experience
 - fast laser oscillation
 - slow ponderomotive oscillation in the optical lattice potential

Elliptical trajectory alters FEL dynamics

Andriyash et. al., PRSTAB 18, 050704 (2015)

Optical lattices provide electron beam trapping

laser

800nm; 2·10¹⁶ W/cm² (a₀=0.1); ~300mJ θ=10° → λ_u =52µm

electron beam

40 MeV; 100pC; 10fs; 1µm diameter 1mrad (x) and 0.36mrad (y) divergence

x-ray beam

4.4nm; 200MW; 2cm saturation length; ρ =4.4·10⁻³

seeded FEL, transverse mode

Electron beam trapping in one dimension

Andriyash *et. al.*, PRSTAB **18**, 050704 (2015) Andriyash *et. al.*, PRSTAB **16**, 100703 (2013) Andriyash *et. al.*, PRL **109**, 244802 (2012)

Compton sources

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de

RF accelerator-driven Compton source PHOENIX source @ HZDR

Fresh results from last week

See Axel Jochmann's talk on the PHOENIX source at WG4 – today 17:00 measured spectrum photondensity over energy & observation angle in log. scale

Removed unpublished data in Web-version.

ELBE RF accelerator (thermionic gun) 23.5 MeV ; 3ps; 80pC ; 0.4% energy spread norm. transverse emittance 11 mm mrad

scattering DRACO laser 2J ; 27fs ; a₀=1.5 ; 35µm spot size X-ray beam 5.5-10⁵ photons/shot total yield 30% BW @ 11.7 keV

Peak brilliance 1.5.10¹⁷ s⁻¹ mm⁻² mrad⁻² [0.1% BW]

State-of-the-art LWFA Compton sources provide either **broadband high photon yield** or **low-bandwidth**

tight overlap, but high intensity; $a_0 \sim 1.5$ 17µm laser spot size

Broadband Compton spectra

K. Khrennikov et. al., PRL **113**, 224801 (2014)

25µm laser spot size max. ~40000 photons detectable

Tunable narrowband Compton spectra

Member of the Helmholtz Association

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de

State-of-the-art LWFA Compton sources provide either broadband high photon yield or low-bandwidth

Ta Phuoc *et. al.*, PRL **114**, 195003 (2015)

Sarri et. al., PRL **114**, 195003 (2015)

peak brilliance

1.8 10²⁰ s⁻¹ mm⁻² mrad⁻² [0.1% BW] @ 6-18 MeV

Page 21

pC/M e shots singl 5 15 20 25 30 10 20 30 40 50 10 35 0 40 45 Electron energy [MeV] X-Ray photon energy [keV]

K. Khrennikov *et. al.*, PRL **113**, 224801 (2014)

scattering laser peak brilliance Ti:Sa, 300mJ, 28 fs, a₀=0.9 0.2..15.10¹⁸ s⁻¹ mm⁻² mrad⁻² max. ~40000 photons detectable

Powers et. al., Nat. Phot. 8, 28-31 (2014)

peak brilliance

1.10²¹ s⁻¹ mm⁻² mrad⁻² [0.1% BW] @ 70-100 keV

Member of the Helmholtz Association

[0.1% BW]

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de

Now take a Petawatt laser pulse...

How far can we scale up photon yields of narrow-band Compton sources? Traveling-wave Thomson scattering improves photons yield per shot by 2-3 orders of magnitudes

	PW-TWTS (¢=120°)	PW-TWTS (LWFA) (\$\phi=120°)
wavelength [µm]	1	1
W _{pulse} [J]	200	200
pulse length [fs]	150	150
I ₀ [W/cm ²]	5.5 x 10 ¹⁶	5.7 x 10 ¹⁶
L _{int} [mm]	57.6	200
photon energy [keV]	23	3500
N _{phot,5%} per pulse	4.9 x 10 ¹⁰	3.4 x 10 ¹⁰

@ 5% bandwidth

Debus *et. al.* Appl. Phys. B (2010) **100**(1) 61-76

ELBE electrons

low-emittance LWFA electrons

Electrons

ELBE electrons: 40 MeV, 1nC, 2 π mm mrad (norm. trans. emittance) LWFA electrons: 500 MeV, 200 pC, 0.1 π mm mrad (norm. trans. emittance)

Page 23

Member of the Helmholtz Association

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de

Towards brilliant Compton sources

- "Head-on" Compton sources are limited in peak brilliance by nonlinear Thomson scattering.
- TWTS sources can increase peak brilliances in the X-ray range by 2 - 3 orders of magnitudes.
- The brilliance limit using TWTS is purely technical.

It arises from electron divergence, size of optics and available laser power.

Outlook

How would a LCLS-type TWTS-OFEL at 1.5Å look like?

Parameter	TWTS	LCLS	
scattered wavelength [Å]	1.5	1.5	
electron energy [GeV]	0.46	13.6	
peak current [kA]	5	3.5	
norm. emittance [mm mrad]	0.24	0.5	
rel. energy spread	0.02 %	0.01 %	
undulator parameter (a_0 or K)	0.2	3.5	3800 undulator periods
laser power [PW]	1.1	-	500 L _{sat} = 78 cm
interaction angle [°]	5	-	₩ 6.300 >>
saturation length [m]	0.8	132	
peak power [GW]	0.5	40	100 X-ray TWTS-OFEL
			0 20 40 60 80 Interaction distance [cm]

Required laser intensity uniformity within one gain length \rightarrow 2.4%

 Member of the Helmholtz Association

 EAAC | September 13-19th 2015 | Dr. Alexander Debus I Institute for Radiation Physics I www.hzdr.de

Conclusions

 Optical Free-Electron Lasers (OFELs) can be realized with existing electron sources and laser systems.

In contrast to head-on OFEL designs, TWTS OFELs have favorable properties with regard to *transverse coherence, space charge* and *photon recoil*.

- TWTS OFELs are scalable to higher photon energies. An X-ray TWTS OFEL would remain compact.
- Narrowband, peak-brilliance Compton sources scale beyond 10¹⁰ photons per shot @ 5% bandwidth.

Thank you for your attention!

Acknowledgements

Klaus Steiniger, Richard Pausch, Michael Bussmann Jakob Krämer, Axel Jochmann, Arie Irman

EAAC | September 13-19th 2015 | Dr. Alexander Debus | Institute for Radiation Physics | www.hzdr.de