LIGHT ION ACCELERATION: BULK VS. SURFACE ACCELERATION AND ROLE OF TARGET RESISTIVITY

Leonida Antonio GIZZI Intense Laser Irradiation Laboratory Istituto Nazionale di Ottica – CNR & Istituto Nazionale di Fisica Nucleare Pisa Italy

Contributors

L.A. Gizzi^{1,2}, C. Altana^{1,3}, F. Brandi^{1,4}, G.A.P. Cirrone⁵, G. Cristoforetti¹, A. Fazzi⁶, P. Ferrara¹, L. Fulgentini¹, D.Giove⁷, P. Koester¹, L. Labate^{1,2}, G. Lanzalone^{5,8}, P. Londrillo⁹, D. Mascali⁵, A. Muoio^{5,10}, D. Palla^{1,2,11}, S. Sinigardi⁹, F. Schillaci⁵, S. Tudisco⁵, G. Turchetti⁹

¹CNR - Istituto Nazionale di Ottica – Intense Laser Irradiation Laboratory (ILIL) – Via G. Moruzzi 1, 56124 Pisa, Italy
²Istituto Nazionale di Fisica Nucleare – Sezione di Pisa – Largo B. Pontecorvo 3, 56127 Pisa, Italy
³Dipartimento di Fisica e Astronomia, Università degli Studi di Catania – Via S. Sofia 64, 95123 Catania, Italy
⁴Istituto Italiano di Tecnologia – Via Morego 30, 16163 Genova, Italy
⁵Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud – Via S. Sofia 62, 95123 Catania, Italy
⁶Energy Department, Polytechnic of Milan and INFN, Milan, Italy
⁷Physics Department, University of Milan and INFN, Milan, Italy
⁸Università degli Studi di Enna "Kore" – Via delle Olimpiadi, 94100 Enna, Italy
⁹ Università di Bologna e INFN, Bologna, Italy
¹Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina – Viale F.S. D'Alcontres 31, 98166 Messina, Italy
⁸Dipartimento di Fisica, Università di Pisa – Largo B. Pontecorvo 3, 56127 Pisa, Italy

Intense Laser irradiation Lab @INO-PISA

PEOPLE

- Leonida A. GIZZI (CNR)* (Resp.)
- Giancarlo BUSSOLINO (CNR)
- Gabriele CRISTOFORETTI (CNR)
- Luca **LABATE** (CNR)*
- Fernando BRANDI (CNR), Ric. TD
- Petra KOESTER (CNR), Ric. Contr.
- Federica BAFFIGI (CNR), A.R.
- Paolo **FERRARA** (CNR), A. R.
- Lorenzo FULGENTINI (CNR), A.R.
- Antonio GIULIETTI (CNR), Assoc
- Danilo GIULIETTI (Univ. Pisa), Ass.*
- Daniele PALLA, PhD student *
- Antonella **ROSSI** (CNR) Tech.
- * Also at INFN

Lab's Main research topics

- Laser-wakefield acceleration (ELI/Euronnac/Eupraxia)
 - Radiobiology with laser-driven electrons;
 - Self-injection mechanisms (see D.Palla WG6 Thu. 18:20H);
 - X-ray and γ -ray generation
- Plasma and laser diagnostics;
- Amplification with diode pumping (collaboration)
- Ultraintense laser-solid interactions
 - Light ion acceleration

..A.Gizzi, EAAC2015

Contents

- Motivation
- Experimental set up
- Overview of results
- Summary

Motivations

- Ongoing activity on basic physics of generation of high energy density using ultrashort laser pulses (ICF relevant);
 - Fast electron generation and transport, X-ray emission, laser absorption;
 - Laser-driven shock wave generation;
- National initiative on laser driven proton acceleration (L3IA - Line for Laser Light lons Acceleration) submitted to INFN and based upon the ILIL laser upgrade currently in progress;

Objectives of L3IA

A laser-accelerated beamline for light ions:

- Develop ion acceleration with ultraintense lasers;
- New target techniques for control of energy spectrum and beam collimation;
- Establish a proton beam line at 14 MeV for applications;
- Provide a dedicated test beamline for ELI (e.g. ELImed@LNS)
- A platform for radiobiology studies with laser accelerated ions

L3IA: Groups

- **Milano**: detectors development dedicated TP, Beam manipulation and post acceleration;
- **Pisa**: laser, laser-plasma acceleration, laser and plasma diagnostics and control
- **Bologna**: Theory: particle in cell modelling, beam dynamics modeling
- **LNS (Catania)**: beam characterization, dosimetry, medical applications;
- LNF(Frascati): detectors and post acceleration
- **Napoli**: radio-biology and medical applications, analytical laserplasma modelling
- Florence: Ion beam based analysis

Laser solid interactions

Laser-foil interactions creates huge currents of relativistic eletrons propagating in the solid and giving rise to intense X-ray emittion and, ultimately, ion emission from the rear surface of the foil

- S. Betti *et al.*, Plasma Phys. Contr. Fusion **47**, 521-529 (2005).
- J. Fuchs et al. Nature Physics **2**, 48 (2006).
- X.H.Yuan et al., New Journal of Physics **12** 063018 (2010)

Proton Acceleration - TNSA

INFN

Laser driven ion acceleration

- High gradient acceleration: MeVµm-1, compared with ~MeV m-1 provided by radio frequency (RF) based accelerators;
- Ultra-short duration at the source of the ion bunch of the order of picoseconds;
- Very small effective source size: ≈10 µm;
- highly laminarity and very low emittance;
- Broad energy spectrum, low collimation
- High charge: 10^8 - 10^9 particles

Current effort

- New acceleration mechanisms at ultrahigh intensity
 - Radiation pressure acceleration
 - Collisionless shock acceleration
- Target engineering: surface, geometry, conductivity
- Post acceleration: selection, collimation, injection
- Dosimetry and radiobiology: fast (ps) ion source

Our recent activity (PlasmaMED 2013-14)

- Dedicated experimental chamber for ion acceleration commissioned end 2014 (Pisa, ILIL laser);
- Ion acceleration runs started Jan. 2014 with existing laser parameters (10 TW);
- Collaboration Pisa, Milano, Catania, Bologna (and Napoli);

A new experimental chamber "Pavone" is operational for laser-solid interaction, dedicated to:

- 1. TNSA acceleration of light ions;
- 2. Fast electron transport;
- Shock generation in nanoengineered target;
- 4. X-ray generation and applications

ILIL@ INO-CNR(Pisa)

Waist= 8.5 µm FWHM=5µm Tau=40 fs E_on_target=400mJ Intensity on target> 1E19 W/cm2 Target thickness=1-15 micron Target Material=Al, Mylar, Cu, CH2, CD2 Angle of incidence=15° Contrast: >1E9

10 TW on target 10th Upgrade in progress

Light ion acceleration

Macchi, Passoni, Borghesi, RMP, 85,751 (2013)

INFN

Experimental set - up

INFN

ILIL Laser: contrast

ILIL Laser contrast: ps tscale

Monitor of plasma gradient

 $2 \omega_L$ emission => interaction at the critical density layer[&] $3/2 \omega_L$ - two-plasmon decay from underdense plasma

[&]L.A.Gizzi et al., Phys. Rev. Lett. **76**, 2278 (1996)

Scattered spectrum vs. focus

Electron spectrometer

Aim: measure energy of forward accelerated (escaping) fast electrons

NFN

Fast electrons at best focus

 Fast electrons are measured **only** at optimum focal position within two Raileigh lengths

Fast electrons at best focus

• Independent measurement using RCF film stack (Sheeba)*

Rear side optical imaging

- Imaging rear side of the target at 45° and 30° from target axis
- Expected maximum of OTR signal for >MeV fast electrons

OTR basics

Transition radiation single electron: Depends on w through $\varepsilon \rightarrow$ flat spectrum in the visible range

$$\begin{split} \frac{\mathrm{d}^2 W}{\mathrm{d}\omega \mathrm{d}\Omega} \bigg|_{\mathbb{H}} &= \frac{e^2}{\pi^2 c} \frac{\beta^2 \sin^2 \theta \cos^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2} \\ &\times \left| \frac{(\varepsilon_{\mathrm{r}} - 1)[1 - \beta^2 - \beta(\varepsilon_{\mathrm{r}} - \sin^2 \theta)^{1/2}]}{[\varepsilon_{\mathrm{r}} \cos \theta + (\varepsilon_{\mathrm{r}} - \sin^2 \theta)^{1/2}][1 - \beta(\varepsilon_{\mathrm{r}} - \sin^2 \theta)^{1/2}]} \right|^2 \end{split}$$

Bellei et al, 2012 Plasma Phys. Control. Fusion 54 035011

INFN

View of OTR imaging system (time integrated)

electrons

OTR from rear target surface

Laser

Plasma from late foil expansion

45° rear side imaging (OTR) 10 µm Al

Image taken with fast electron beam on

45° rear side imaging - 10 µm Al

Image taken with fast electron beam **off (no signal from electron spectrometer)** Target was displaced by 100µm from best focus position

30° rear side imaging

Rear side optical emission

Aluminium $3\,\mu m$

10 µm

Copper 8 µm

Plastic 0.9 µm

Preliminary conclusions on OTR

- Well localized optical emission
- **Correlation** with fast electron emission
- Polarization analysis consistent with OTR
- Shape of emission reproducible from shot to shot
- Similar emission found for AI, Cu and mylar

Thomson Parabola results

(Detailed analysis still in progress)

р	1,55 MeV
C1+	1.05 MeV
C2+	1.09 MeV
C3+	1.17 MeV

Al 10(µm)

INFN

INFN

р	1,017 MeV		
C1+	450,1 keV		
C2+	407,7 keV		
C3+	316,8 keV		

CH2 (6µm)

53

INFN

р	1,096 MeV		
C1+	407,6 keV		
C2+	573 <i>,</i> 4 keV		

INFN

р	1,306 MeV		
C1+	557,8 keV		
C2+	834,7 keV		
C3+	1,098 MeV		

C¹⁺

р	1,612 MeV		
d	155,3 keV		
C1+	1,145 MeV		
C2+	933,2 keV		
C3+	1,499 MeV		
C4+	1,115 MeV		

CD2 (4µm) +

Al(0.1µm)

#84

0.4

0.35

0.3

Electric deflection normalized [m²/N] 50 510

0.1

0.05

0 L 0

500

1000

Magnetic deflection normalized [m/T]

1500

2000

2500

р	1,096 MeV			
C1+	652,8 keV			
C2+	652,8 keV			
C3+	719,6 keV			
C4+	694,5 keV			

р	1,351 MeV			
d	156,7 keV			
C1+	407,6 keV			
C2+	334,0 keV			
C3+	416,6 keV			

CD2(4µm) +

Al(0.1µm)

#80

L.A.Gizzi, EAAC2015

Energy vs. target thickness

INFN

L.A.Gizzi, EAAC2015

Summary

- TNSA process reproducible and controllable;
- Multiple diagnostics tested (TP, Diamond, RCF ...)
- Standard targets fully explored
- Surface vs. volume acceleration
- Scaling with laser intensity confirmed
- Target engineering still to be explored

ILIL Laser upgrade

ILIL(Pisa) - MAIN LASER BEAM PARAM	Current (dec.2015)	1° phase (6- 2016)	Final
Wavelength (nm)	800	800	800
Pump Energy (J)	1.8	6(12)	24
Pulse duration(fs)	40	30	25
Energy before compression (J)	0.6	2(4)	7
Energy after compression (J)	0.4	1.5(3)	5
Rep rate (Hz)	10	1	1
Max Intensity on target	2E19	7.5E19(1.2E20)	4E20
Contrast (ns)	>1E9	>1E9	>1E10
Expected proton beam energy (MeV)	2	6(8)	12

- Upgrade will be developed in phases:
- 1° phase (mid 2016)
 will deliver a
 minimum of 1.5 J on
 target, >4x current
 energy.
- Ion energy scaling sets max ion energy around 5 MeV
- Final goal is 12 MeV, to be achieved with 5 J of energy on target.

..A.Gizzi, EAAC2015

INO-CNR (PI): Infrastructure development

ILIL LASER UPGRADE TO 200 TW AND NEW, SHIELDED TARGET AREA

ILIL-PW – Layout

Thank you