

Overview of Advanced Accelerator Development in Asia

Wei Lu Tsinghua University,China The 2nd EAAC *La Biodola, Isola d'Elba* 13-19 September 2015

Acknowledgement

Many thanks for people who provide materials in this talk:

J. Wang (NCU), C.H. Nam(IBS), M. Kondo(KPSI)

Z.T. Zhao (SINAP), Z.M. Sheng (SJTU), R.X. Li(SIOM), Y.T. Li(IOP), L.M. Chen(IOP), X.Q. Yan(PKU), Y.C. Du(Tsinghua), J.R. Shi(Tsinghua), Y.Q. Gu(LFRC)

Outline

- Major Laser Facility for AAC in Asia (9 in this talk)
- Recent research progress (some highlights)
 - LWFA (energy gain, energy spread, staging, advanced diagnostics such as electron snapshot of wakefield, programmable plasma structures)
 - Theory and simulation (injection phase space dynamics, controlled injection for super bright beam generation, phase space matching for staging)
 - Radiation source (Betatron, Thomson scattering source, THz, see Kim's talk on Friday)
 - Ion acceleration (energy gain, RPA, proton imaging)
 - C-X band high gradient structure (KEK/SINAP/Tsinghua, see Valery's talk tomorrow)
- Future Perspective

PW Laser at Center for Relativistic Laser Science

Kansai Photon Science Institute JAPAN ATOMIC ENERGY AGENCY

XG-III facility (ns/ps/fs)at LFRC of China

HHG-seeded LWFA-based XFEL (SIOM) Shanghai

200TW Laser System and Chambers Laboratory for Laser Plasmas (LLP) Shanghai Jiao Tong University (SJTU)

Energy/pulse ~5 J Pulse duration ~25 fs Peak Power ~200 TW

Laser Facility @IOP Beijing

20TW/100TW/1PW systems with 3 target chamber

Compact LAser Plasma Accelerator @Peking Uni.

Advanced Acceleration Platform @ Tsinghua Univ

40TW Laser +45MeV Linac

45MeV LINAC 25fs 40TW Laser System

Sub 50fs high current (>5kA) electron beam obtained through hybrid compression

 $L^2 PA$

Laboratory of Laser Plasma Physics and Advanced Accelerator Technology at Tsinghua University

Current Research Focus

Key physics of high quality plasma based accelerators

• Stable and efficient acceleration structure

>Matched self-guiding, fully optical channel generation, channel assisted matched guiding...

 High quality controlled injection and 6D phase space manipulation
> ultralow emittance, high brightness, high charge and current, low energy spread, short pulse duration, controllable profile, phase space matching ...

Diagnostics of beams with special space and time structures
> ultralow emittance, low energy spread, phase space structures...

Diagnostics for acceleration structure and dynamic processes
> Optical probe、electron probe ...

NCU 100TW Multi-Pulses Facility @ Taiwan (Prof. J. Wang)

Electrons over 2 GeV from a 1-cm gas cell

Gas cell length = 10 mm Positively chirped 61 fs Intensity = $2x10^{19}$ W/cm² (a₀=3.1)

Electron energy > 2 GeV

Top view (Thomson scattering)

5

Propagation length (mm)

Smooth propagation over the whole medium length of 10 mm

7.5

10

2.5

0

SJTU

Self-truncated ionization injection Mirzaie et al. Scientific Reports (2015)

300TW self-injection

SIOM

Appl. Phys. Lett.103, 243501(2013)

Very low energy spread (absolute and relative) electron beams via self-injection @ Tsinghua

10-30MeV pC electron beam generation by a 60fs 5TW laser

Very low absolute energy spread (AES) and relative energy spread (RES) observed under proper conditions :

On many shots, AES below 0.5MeV (rms), with the lowest 0.18MeV

On many shots, **RES** around 1-2% (rms), with the lowest 0.8%

Small divergence of a few mrad, with the smallest **1.2mrad**

By J.F. Hua, C.H. Pai et al.

300-430MeV low energy spread (2-5%) electron beams using a 50TW laser@NCU (Tsinghua/NCU/UCLA)

Single stage self-guided LWFA via self-injection

Energy (MeV)	RMS energy spread	Divergence angle (mrad)
265	2.1%	1.3
334	2.3%	0.83
367	5.2%	1.0
377	5.5%	1.6
408	2.3%	1.0
435	3.6%	1.6

By C.H. Pai et al.

SIOM:High-quality electron beams by two stage LWFA

The 1st demonstration of electron Snapshot of Wakefield @NCU (Tsinghua/NCU/UCLA)

Experimental observation of Wakefield

TO BE RELEASED WHEN PUBLICATION IS ACCEPTED

Wakefield propagation

TO BE RELEASED WHEN PUBLICATION IS ACCEPTED

Electron pulse duration estimation by sinusoidal oscillation by laser field

H. Kotaki et al., J. Phys. Soc. Jpn., 84, 074501 (2015).

Programmable fabrication of plasma structure using SLM@NCU/Tsinghua

Structures with features about 10um can be fabricated

Density range: 10^18cm-3 to 10^20cm-3 PHYSICS OF PLASMAS 13, 110701 2006

Theory and Simulation

F. Li et al., PRL 111,015003 (2013)

Tsinghua/UCLA

Theory and Simulation

Two color ionization injection

L.L. Yu et al., PRL. 112, 125001 (2014) LBNL/SJTU Xu et al., PRSTAB 17,061301 2014 Tsinghua/UCLA

Dense attosecond electron sheets using up-ramp density transition

F.Y.Li et al., PRL 110, 135002 (2013) SJTU/MPQ/UCLA/Tsinghua

Also see M. Chen's talk on ionization injection

Exact phase space matching for staging plasma and traditional accelerator components using longitudinally tailored plasma profiles

XU et al., Tsinghua/UCLA/SLAC

arXiv:1411.4386v2 (2014)

Betatron enhancement by plasma waveguide structure modification

Betatron enhancement using cluster target

L. M. Chen. Sci. Reports 3, 1912(2013) **IOP**

3TW laser through DLA to generate 2*10^8 X ray photons

Strong Betatron enhancement due to the second injection in LWFA

Yan, Chen*, PNAS 111, 5825 (2014) IOP/LLNL

Thomson/Compton source

China (Tsinghua TTX)

Phase Contrast Image

Powerful Terahertz Radiation from Relativistic Plasmas

IOP

• no damage limit/ Arbitrarily high laser intensity

Radiation pressure acceleration of protons with CP PW laser

Optimization of target thickness *▶*

NCD Plasma lens for particle acceleration &&radiation

PRL107, 265002 (2011); 110, 045002 (2013); 115, 064801, 2015; PoP, 20, 013101 (2013); PoP22, 080704 (2015)

Carbon Nano-Tube (as NCD lens) + DLC foil

Experiments were performed using the CoReLS PW Laser in Korea (Prof.C.H.Nam).

Cutoff energy of protons/carbons for linear polarization

By Yan, Ma, Lin, Schreiber, Zepf, Kim && Nam et al.,

See Wenjun Ma's Talk

M. Nishiuchi et al., Rev. Sci. Instrum. **85**, 02B904 (2014) M.Nishiuchi et al., PoP **22** 033107 (2015)

SJTU

Ion energy spectra with plateau profiles: evidence of collisionless shock wave acceleration (submitted)

LFRC 20MeV (TNSA) proton imaging

C-band R&D for SXFEL at SINAP

X-band plan at SINAP

- 1. Specific one-meter X-band accelerating structure has been designed and optimized for FEL, and one X-band deflecting cavity has been carried out at SINAP, and it's important beginning for X-band accelerating structure plan.
- X-band RF unit based on 50MW klystron is also proposed for X-band Accelerator Test Facility (XATF) at SINAP, which gradient target is about 80MV/m.
- The XATF at SINAP is the key plan in the future, and 80MV/m gradient and beam test will be verified in this facility, and many key parameters will be tested.

11424MHz
4π/5
89+2
944.73mm
10.497mm
1.5 mm
1.8
4.3~3.05.mm
3.45%~1.12%
86.7~108.7MΩ/m
0.61
150 ns
4.14~2.33 MW/mm^2
2.68~2.02
2.68~2.39 mA/V
52MW @65MV/m 80MW @80MV/m

Future Perspective

- The AAC community in Asia is growing fast! Many institutes invest heavily into this area
- The quality of the work is getting better and better, and there will be more leading results from Asia in the future
- More work will focus on how to build an accelerator: using the language of accelerator physics, such as phase space, matching
- It is an exciting time for AAC community, Asia as well

Thank you for your attention!