

Beam manipulation with velocity bunching for PWFA applications

Riccardo Pompili LNF-INFN on behalf of the SPARC_LAB collaboration

SPARC_LAB test-facility

Ferrario, M., et al. "SPARC_LAB present and future." NIMB 309 (2013): 183-188.

High brightness photo-injector

Anderson, S. G., et al. "Velocity bunching of high-brightness electron beams." PRSTAB 8.1 (2005): 014401. Piot, P. et al. "Subpicosecond compression by velocity bunching in a photoinjector." PRSTAB 6.3 (2003): 033503.

FLAME: a 300 TW Ti:Sa laser

Radiation source activities

Plasma-based acceleration activities

- Several plasma-based schemes will be tested
 - **PWFA** resonant scheme \rightarrow **1-2 GV/m** expected
 - n_e~10¹⁶ cm⁻³, 1 mm diameter capillary, Hydrogen
 - LWFA, external injection → 5-10 GV/m expected
 n ~10¹⁷ cm⁻³, 100 µm diameter capillary, Hydrogen
- Goal: high quality accelerated beams
 - Maintain the high brightness of injected beams

Ultra-short electron beams

- Current demands require high current beams
 - ✓ PWFA-LWFA: high wakefield amplitude (i.e. high driver density), low energy spread (i.e. short witness).
 - ✓ Advanced radiation sources: high peak currents (FEL), short beams (broadband THz radiation).
- Velocity bunching @ SPARC_LAB
 - *RF* structure embedded in solenoid fields for emittance compensation

Serafini, L., M. Ferrario. "Velocity bunching in photo-injectors." AIP conference proceedings. 2001. Ferrario, M.et al. "Experimental demonstration of emittance compensation with velocity bunching." PRL 104.5 2010.

REAmplitude

Accelerating

e

Phase

60 fs

(rms)

400 p

10

12

Decelerating

c 10

rad)

Vormalized emittance

Laser-comb with velocity bunching

• **Laser-comb**: multiple bunches train produced directly at the cathode

- ✓ Pulses delayed by birefringent crystals, delay lines to take full control of distances
- ✓ Easy setup, half-wave plates for (un)balancing (charge ramps...)

Ferrario, M., et al "Laser comb with velocity bunching: Preliminary results at SPARC." NIM 637.1 2011 S43-S46.

- Velocity bunching for bunch compression
 - Distance and duration tuning by moving S1 phase
 - Different approach with respect to other multibunches schemes, e.g. @ FACET.

C. Ronsivalle et al. "Large-bandwidth two-color free-electron laser driven by a comb-like electron beam." New Journal of Physics (2014): 033018.

Hogan, M. J., et al "Plasma wakefield acceleration experiments at FACET." New Journal of Physics 2010 055030.

Laser-comb: optical setup

Villa, F., et al. "Laser pulse shaping for multi-bunches photo-injectors." NIM A 740 (2014): 188-192.

Chiadroni, E., et al. "Characterization of the THz radiation source at the Frascati linear accelerator." RSI 84.2 2013 **Mostacci, A., et al.** "Advanced beam manipulation techniques at SPARC."Proceedings of IPAC2011

Measurement tools

Cianchi, A. et al. Six-dimensional measurements of trains of high brightness electron bunches. PRSTAB 18 082804.

2nd European Advanced Accelerator Concepts Workshop | 11/29

Single-shot and non-destructive tool

- Multi-bunches trains have been measured with Electro-Optical Sampling
 - ✓ Single-shot, non-intercepting
 - ✓ 80 fs (rms) temporal resulution
- Goal: monitor beam injection in plasma

R. Pompili, et al., NIM A: Accelerators. 740, 216 (2014).

Spatial decoding

PWFA and LWFA requirements

LWFA by external injection (I)

,	
Energy (J)	3.5

Laser parameters

Duration (fs)	35
Bandwidth (nm)	60/80

\rightarrow A. R. Rossi	
WG1, Tue 15	

Beam parameters

Charge (pC)	10
Energy (MeV)	80
Emittance (µm)	1
Spot (µm)	5.5
Duration (fs)	17

• Average accelerating field: **7 GV/m** ($n_0 = 10^{17} \text{ cm}^{-3}$)

- Optimized matching
 - Simulations show emittance growth limited to 10%
 - Input ramp: relaxed beam transverse matching
- Energy spread ~ 0.9%, strongly reduced at exit
 - Exit ramp: acts as a dechirper (λ_p increases)

Rossi, Andrea R., et al. "The External-Injection experiment at the SPARC_LAB facility." NIM A 740 (2014): 60-66.

High quality ultra-short beams with VB

Collected FEL light, 100 fs (rms), 40 μJ

Bunch parameters

Charge (pC)	Energy (MeV)	Energy Spread (%)	Duration (fs)	Emittance (µm)	Peak current (A)
20	114	0.1	26	1.2	400

Laser vs e⁻ beam time-jitter reduction

2nd European Advanced Accelerator Concepts Workshop 16/29

PWFA – Quasi-nonlinear regime

 $\frac{n_b}{n_p} > 1$

- Condition for blowout:
 - Bubble formation w/o wave-breaking, λ_{n} is constant \rightarrow **resonant scheme in blowout**
 - Linear focusing force \rightarrow emittance preserved
- A measure of nonlinearity is the normalized charge

$$\widetilde{Q} \equiv \frac{N_b k_p^3}{n_p} = 4 \pi k_p r_e N_b \rightarrow \begin{cases} \ll 1 & \text{linear regime} \\ >1 & \text{blowout regime} \end{cases}$$

Using low emittance, high brightness beams we have

$$\widetilde{Q} < 1$$
 $\frac{n_b}{n_p} > 1$

- These conditions define the quasi-nonlinear (QNL) regime
 - $n_{p} = 10^{16} \text{ cm}^{-3}, Q_{p} = 200 \text{ pC}, \sigma_{t} = 180 \text{ fs}, \sigma_{x} = 5.5 \text{ um} \rightarrow n_{p} \sim 5n_{p} \text{ and } \widetilde{Q} = N_{b} k_{p}^{3} / n_{p} \approx 0.8$

Rosenzweig, J. B., et al. "Plasma Wakefields in the Quasi □ Nonlinear Regime." (2010): 500-504. **Londrillo, P., et al.** "Numerical investigation of beam-driven PWFA in quasi-nonlinear regime." NIM 740 (2014): 236

Acceleration in plasma

• Hybrid kinetic-fluid simulation by **Architect**

- PIC (bunch), fluid (plasma), 3-5 hours for 3 cm
- Cross-checked with full PIC codes (ALaDyn)

	Q (pC)	σt (fs)	σx (μm)	E (MeV)	ε (μm)
Driver	200	180	5.5	116	4.5
Witness	20	35	3	116	2.4

Toward the PWFA

VB dynamics: 1 driver + witness

VB dynamics: N driver + witness

2nd European Advanced Accelerator Concepts Workshop | 21/29

Witness – tuning and characterization

Ramped comb beams

z-x view

Longitudinal Phase Space

Recipe for PWFA beams

2.4 ps

550 fs

Generation of the required train bunches

- σ_{t} =100 fs (rms) laser @ cathode (blowout [1,2])
- Laser pulse distance at cathode:
- Driver-Witness distance at linac exit:

	Driver	Witness
Charge (pC)	200	20
Energy (MeV)	107.6	107.4
Final focus (µm)	5.5	3
Duration (fs)	190	40
Emittance (µm)	3.9	2.7

[1] Musumeci, P., et al., Physical review letters 100.24 (2008): 244801. [2] Moody, J. T., et al. Physical Review Special Topics-Accelerators and Beams 12.7 (2009): 070704.

2nd European Advanced Accelerator Concepts Workshop 24/29

Hollow driver beams

- Witness degradation during bunch crossing
 - Driver as nonlinear lens \rightarrow emittance growth
 - Driver field opposed to $RF \rightarrow$ lower compression
- Use of hollow driver beam
 - ✓ No beam-beam effects → unperturbed witness
 - Higher driver emittance (larger spot on cathode)

Hollow driver – comb beams

3.5 ^{× 10⁻¹³} x<mark>, 10⁻⁶</mark> 20 pC witness 3 0.8 2.5 Emittance (m rad) Duration (s) 0.6 2 1.5 Further optimization is possible... 0.2 0.5 0<u>1</u> 0 12 2 8 10 6 Δ z (m)

Conclusions

- Velocity bunching with emittance compensation @ SPARC_LAB
 - Results show that VB scheme is able to produce beams meeting PWFA and LWFA (by external injection) requirements
- Together with laser-comb technique it allows resonant PWFA schemes, too
 - Full control of bunch durations, distances and charges demonstrated @ SPARC_LAB
 - Current measurement tools allow a complete characterization of all bunches
- PWFA in quasi-nonlinear regime shows promising results

- High accelerating gradients, emittance preservation, extension to resonant schemes
- Hollow driver beams avoid witness bunch degradation during VB
 - Ultra-short bunches with ultra-low emittance can be produced
 - Goal: preserve high brightness beams during plasma acceleration process

Acknowledgments

- D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F. Bisesto, M. Castellano, E. Chiadroni, M. Croia, D. Di Giovenale, M. Ferrario, G. Di Pirro, S. Romeo, J. Scifo, V. Shpakov, B. Spataro, C. Vaccarezza, F. Villa (INFN, Frascati)
- A. Cianchi (Tor Vergata University of Rome)
- F. Filippi, F. Giorgianni, A. Giribono, S. Lupi, A. Marocchino, F. Massimo, F. Mira, A. Mostacci, M. Petrarca (Sapienza University of Rome)
- F. Ciocci, A. Petralia (ENEA, Frascati)
- A. Bacci, V. Petrillo, A.R. Rossi, L. Serafini (INFN, Milano)

This work has been partially supported by the EU Commission in the Seventh Framework Program, Grant Agreement 312453-EuCARD-2 and the Italian Minister of Research in the framework of FIRB – Fondo per gli Investimenti della Ricerca di Base, Project n. RBFR12NK5K.

Thank you for your attention!