Hosing in Multi-Pulse Laser Wakefield Accelerators

Roman Walczak, Simon M. Hooker John Adams Institute & Department of Physics, University of Oxford, UK

Stuart P. D. Mangles John Adams Institute & Department of Physics, Imperial College, UK

Multi-Pulse Laser Wakefield Acceleration MP-LWFA

- Fibre and thin-disk lasers for MP-LWFA
- kHz rate
- high efficiency
- excellent spatial quality and pointing
- lower peak power on optics
- compact
- fast feed back diagnostics

Hosing is driven by transverse gradients in the refractive index of the plasma
by considering the bending of phase fronts due to a transverse plasma density gradient (Mori 1997) the variation of the centroid of a pulse, p, can be described by

$$\frac{\partial^2 \rho}{\partial t^2} \simeq -\frac{c^2}{2} \frac{\omega_p^2}{\omega_0^2} \frac{\partial}{\partial r} \left(\frac{\delta n}{n_0}\right) = -\frac{c^2}{2} \frac{\omega_p^2}{\omega_0^2} \partial_r \left(\frac{\delta n}{n_0}\right)$$

• a second pulse trailing in the wake driven by another pulse will follow oscillating or will refract away depending on the sign of $\partial_r(\delta n/n_0)$

Hosing

Model

► Trains of identical laser pulses: 10 to 120 pulses Each pulse:

considered parameters

- 10 mJ, FWHM 100 fs, w0 = 40 μ m, Gaussian envelope
- $a_0 = 0.052$, Power/Critical Power = 6×10^{-4}
- plasma density = 1.74×10^{17} cm⁻³, $\lambda_p = 80 \mu m$, $k_p \times 0 = \pi$
- considered accelerator length = 25 cm

- Nonrelativistic calculations
- analitic solutions of fluid equations in 2D + 1 following Gorbunov and Kirsanov (1987)
- Weakly relativistic calculations
- numerical solutions of fluid equations in 2D +1 following Miano (1990)

1 pulse

0.0001

0.00005

^{o.oooo} r [m]

-0.00005

0.0001

r [m]

UNIVERSITY OF

0.00005

for example:

n pulses uniformly spaced by (1 - α) λ_{p}

=> (n - 1) (1 - α) λ_p is the distance between the first and last pulse in the train which needs to be not smaller than the nominal length of the train = (n - 1) λ_p from which the size of the focusing part, f λ_p , is subtracted:

=> (n - 1) (1 -
$$\alpha$$
) λ_p > (n - 1) λ_p - f λ_p is required
=> α < f/(n - 1)

But pulses spaced by a fraction of λ_{D} would modify the wake =>

=> f might be smaller than 0.5

10 pulses $\alpha = 0.02$

Roman Walczak University of Oxford EAAC 2015, Isola d'Elba, 14 - 18 Sep 2015

10 pulses $\alpha = 0.04$

Roman Walczak University of Oxford EAAC 2015, Isola d'Elba, 14 - 18 Sep 2015

10 pulses with

spacing: $\alpha = 0.04$

vertical spacing = $w_0/10$

10 pulses α = 0.04 is too big

spacing: $\alpha = 0.04$

spacing: $\alpha = 0.02$

at the moment when the pulse 10 is at z = 0

f is not more than about 0.2

120 pulses and transverse limit; $\alpha = 0.002$

Roman Walczak University of Oxford EAAC 2015, Isola d'Elba, 14 - 18 Sep 2015

120 pulses and transverse limit; $\alpha = 0.002$

120 pulses and transverse limit; $\alpha = 0.002$

In the transverse plane, pulses need to be placed between the axis and the location of the maximum of the transverse component of the density gradient.

Relativistic plasma period growth

John Adams Institute for Accelerator Science

The energy gradient

Roman Walczak University of Oxford EAAC 2015, Isola d'Elba, 14 - 18 Sep 2015

Summary

Longitudinal, focusing, amount of the phase available for adjustments/tolerance is f λ_p (or f 2 π), where f is about 0.2.

• What matters is the accumulated longitudinal phase, not individual spacing of the pulses; one should be able to control it.

• Relativistic effects affect the longitudinal accumulated phase at the level of 10%; it is a shift of 10% not a cut so only appropriate adjustment is needed; no problem in principle.

Transversely, pulses need to be between the axis and the location of the maximum of the density gradient.

Further work:

- Extend weakly relativistic calculations to the full accelerator length ≈ 25 cm.
- Consider a parabolic plasma channel.
- Inject electrons and accelerate them.

