Hosing in Multi-Pulse Laser Wakefield Accelerators

Roman Walczak, Simon M. Hooker
John Adams Institute \& Department of Physics, University of Oxford, UK
Stuart P. D. Mangles
John Adams Institute \& Department of Physics, Imperial College, UK

Multi-Pulse Laser Wakefield Acceleration MP-LWFA

- Fibre and thin-disk lasers for MP-LWFA
- kHz rate
- high efficiency
- excellent spatial quality and pointing
- lower peak power on optics
- compact
- fast feed back diagnostics
- Hosing is driven by transverse gradients in the refractive index of the plasma
- by considering the bending of phase fronts due to a transverse plasma density gradient (Mori 1997) the variation of the centroid of a pulse, ρ, can be described by

$$
\frac{\partial^{2} \rho}{\partial t^{2}} \simeq-\frac{c^{2}}{2} \frac{\omega_{p}^{2}}{\omega_{0}^{2}} \frac{\partial}{\partial r}\left(\frac{\delta n}{n_{0}}\right)=-\frac{c^{2}}{2} \frac{\omega_{p}^{2}}{\omega_{0}^{2}} \partial_{r}\left(\frac{\delta n}{n_{0}}\right)
$$

- a second pulse trailing in the wake driven by another pulse will follow oscillating or will refract away depending on the sign of $\partial_{r}\left(\delta n / n_{0}\right)$
- Trains of identical laser pulses: 10 to 120 pulses

Each pulse:

- 10 mJ , FWHM $100 \mathrm{fs}, \quad \mathrm{w} 0=40 \mu \mathrm{~m}$, Gaussian envelope
- $a_{0}=0.052$, Power/Critical Power $=6 \times 10^{-4}$
- plasma density $=1.74 \times 10^{17} \mathrm{~cm}^{-3}, \quad \lambda_{\mathrm{p}}=80 \mu \mathrm{~m}, \quad \mathrm{k}_{\mathrm{p}} \mathrm{w} 0=\pi$
- considered accelerator length $=25 \mathrm{~cm}$
- Nonrelativistic calculations
- analitic solutions of fluid equations in 2D + 1 following Gorbunov and Kirsanov (1987)
- Weakly relativistic calculations
- numerical solutions of fluid equations in 2D +1 following Miano (1990)
$2 A i$

1 pulse

Focusing

for example:
n pulses uniformly spaced by $(1-\alpha) \lambda_{p}$
$\Rightarrow(n-1)(1-\alpha) \lambda_{p}$ is the distance between the first and last pulse in the train which needs to be not smaller than the nominal length of the train $=(n-1) \lambda_{p}$ from which the size of the focusing part, $f \lambda_{\mathrm{p}}$, is subtracted:
$\Rightarrow(n-1)(1-\alpha) \lambda_{p}>(n-1) \lambda_{p}-f \lambda_{p}$ is required
$=>\alpha<f /(n-1)$
But pulses spaced by a fraction of λ_{p} would modify the wake =>
=> f might be smaller than 0.5

John Adams institute for Accelerator Science
10 pulses $\alpha=0.02$

10 pulses with spacing: $\alpha=0.04$ vertical spacing $=w_{0} / 10$

10 pulses $\alpha=0.04$ is too big
spacing: $\alpha=0.02$

spacing: $\alpha=0.04$

at the moment when the pulse 10 is at $\mathrm{z}=0$
f is not more than about 0.2

120 pulses and transverse limit; $\alpha=0.002$

${ }^{0.00004}$ [Trajectories of pulses 81 to 90

$\partial_{r}\left(\delta n / n_{0}\right)$ seen by the pulse 70

t [s]
$\partial_{r}\left(\delta n / n_{0}\right)$ seen by the pulse 88

120 pulses and transverse limit; $\alpha=0.002$
Trajectories of pulses 91 to 100

Trajectories of pulses 101 to 110

120 pulses and transverse limit; $\alpha=0.002$

In the transverse plane, pulses need to be placed between the axis and the location of the maximum of the transverse component of the density gradient.

Relativistic plasma period growth

The energy gradient

Summary

- Longitudinal, focusing, amount of the phase available for adjustments/tolerance is $f \lambda_{\mathrm{p}}$ (or f 2π), where f is about 0.2.
- What matters is the accumulated longitudinal phase, not individual spacing of the pulses; one should be able to control it.
- Relativistic effects affect the longitudinal accumulated phase at the level of 10%; it is a shift of 10% not a cut so only appropriate adjustment is needed; no problem in principle.
- Transversely, pulses need to be between the axis and the location of the maximum of the density gradient.
- Further work:
- Extend weakly relativistic calculations to the full accelerator length $\approx 25 \mathrm{~cm}$.
- Consider a parabolic plasma channel.
- Inject electrons and accelerate them.

