

Electron rephasing in laser-wakefield accelerators

EAAC 2015 La Biodola, Italy, 14-18 September 2015

<u>A. Döpp</u>,^{1,2} E. Guillaume,¹ C. Thaury,¹ K. Ta Phuoc,¹ A. Lifschitz,¹ J-P. Goddet,¹ A. Tafzi,¹ D. Douillet,¹ G. Rey,¹ S.W. Chou,³ L. Veisz,³ and V. Malka¹

> ¹Laboratoire d'Optique Appliquée, Palaiseau, France ²Centro de Láseres Pulsados, Salamanca, Spain ³Max Planck Institute for Quantum Optics, Garching, Germany

Talk outline

- Laser wakefield acceleration
- Electron dephasing
- Adapting the wake velocity
- Experimental results & discussion

Laser wakefield acceleration in the blowout regime

Laser wakefield acceleration in the blowout regime

Limits on energy gain

3

- Dephasing reduces efficiency of LWFA
- Dephasing is the final limit on energy gain
- But: Dephasing reduces energy spread
- Can we increase the gain of a dephasing limited accelerator?

$$L_d \simeq \frac{c_0}{c_0 - v_\phi} r_B$$

What is the phase velocity of the wake?

Non evolving bubble:

- Group velocity $1 \frac{n_e}{2n_c}$ Etching $-\frac{n_e}{n_c}$

$$L_d \simeq \frac{c_0}{c_0 - v_\phi} r_B$$

What is the phase velocity of the wake?

Non evolving bubble:

- Group velocity $1 \frac{n_e}{2n_c}$ Etching $-\frac{n_e}{r}$

Evolving bubble:

 Additional contraction / expansion term

* Bulanov et al. PRE (1998)., Geddes et al., PRL (2008)

Adjusting the wake velocity PIC simulation of shock injection

* 1500 x 250 cells, $\Delta x = 0.3 \ k_0^{-1}$, $\Delta r = 1.5 k_0^{-1}$. $\lambda_0 = 0.8 \mu m$.

Adjusting the wake velocity Electron rephasing

- Invert principle of downramp injection : an increase of plasma density can lead to bubble contraction
- Electron is rephased

10

Adjusting the wake velocity Electron rephasing

- Invert principle of downramp injection : an increase of plasma density can lead to bubble contraction
- Electron is rephased

10

electron remains in accelerating phase

wake speeds up by cavity contraction!

- Theoretical framework only developed for phase locking in linear regime
- Non-linear regime is more complex due to self-focusing

* e.g. Sprangle et al., PRE 2001, Pukhov et al., PRE 2008, Rittershofer et al. PoP 2010

Adjusting the wake velocity Electron <u>rephasing</u>

Propose phase reset instead of phase locking!*

11

Gain estimation^{*} for complete instantaneous phase reset at different position x :

$$\Delta \gamma_{max}(x_{boost}) = \left(1 + \frac{x}{L_d} - \frac{3}{4}\frac{x^2}{L_d^2}\right) \times \Delta \gamma_{max}(n_0)$$

maximum gain of ~ 30 percent close to dephasing length

Adjusting the wake velocity PIC simulations of acceleration with density step

* 1500 x 250 cells, $\Delta x = 0.3 \ k_0^{-1}$, $\Delta r = 1.5 k_0^{-1}$. $\lambda_0 = 0.8 \mu m$.

Adjusting the wake velocity PIC simulations of acceleration with density step

Self-injection

* 1500 x 250 cells, $\Delta x = 0.3 k_0^{-1}$, $\Delta r = 1.5 k_0^{-1}$. $\lambda_0 = 0.8 \mu m$.

Adjusting the wake velocity PIC simulations of acceleration with density step

... so shocks might work better!

* 1500 x 250 cells, $\Delta x = 0.3 k_0^{-1}$, $\Delta r = 1.5 k_0^{-1}$. $\lambda_0 = 0.8 \mu m$.

Experimental setup

Experimental setup Turn around shock front injector setup

14

Experimental results Raw data

raw LANEX data of 5 consecutive shots <u>without</u> density transition

14

Experimental results Raw data

raw LANEX data of the next 5 shots <u>with</u> density transition

Electrons accelerated beyond cut-off

Experimental results Deconvolved data

- Electrons accelerated beyond cut-off
- Rear part of the bunch is decelerated and defocussed

15

* Submitted

Experimental results

Comparison to PIC for experimental parameters

- Observe non-linear field increase at the rear of the bubble
- Rotation in z/p_z space reduces energy spread : (leads to quasimonoenergetic beam)

 Electrons injected via shock front injection

17

 Electrons injected via shock front injection

17

 Energy increases with backing pressure of second jet

- Electrons injected via shock front injection
- Energy increases with backing pressure of second jet

 Electrons injected via shock front injection

17

• Energy increases with backing pressure of second jet

 Electrons injected via shock front injection

17

- Energy increases with backing pressure of second jet
- At high pressure electrons are entirely defocused

Conclusions

- Dephasing effects can be mitigated by density tailoring
- Simple experimental setup (shock front)
- Observed gain of ~50 %, exceeding linear E-field model (~30%)
- Best suited for monoenergetic beams

By the way: electrons never leave the bubble, same laser, same jet – in contrast to staging ...

Contact: adoepp@usal.es | andreas.doepp@ensta-paristech.fr

Thank you for your attention!

btw.

Setup for rephasing of shock injected beams

