

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Proton-Driven Plasma Wakefield Acceleration Allen Caldwell Max-Planck-Institut für Physik

- **1. Motivation**
- 2. How it works & challenges
- **3.** The AWAKE project
- 4. Long-term perspectives

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by

Particle physicists are convinced there are more discoveries to come:

Many things not explained in the standard model:

- why three families
- matter/antimatter imbalance
- neutrinos and neutrino mass
- hierarchy problem/unification
- dark matter
- dark energy

Need to find ways to explore physics at higher energy scales in a laboratory environment.

New acceleration technology !

log(Q [GeV])

September 16, 2015

Proton Drivers for PWFA

Proton bunches as drivers of plasma wakefields are interesting because of the very large energy content of the proton bunches.

Drivers:

PW lasers today, ~40 J/Pulse

FACET, 30J/bunch

SPS 20kJ/bunch LHC 300 kJ/bunch

Witness: 10^{10} particles @ 1 TeV \approx few kJ

Energy content of driver allows to consider single stage acceleration

September 16, 2015

Basic Aspects

• Small beam dimensions required !

$$E_{z,\max} \approx 2 \text{ GeV/m} \cdot \left(\frac{N_b}{10^{10}}\right) \cdot \left(\frac{100 \ \mu\text{m}}{\sigma_z}\right)^2$$

- Need very short proton bunches for strong gradients. Today's proton beams have $\sigma_z\approx 10-30~{\rm cm}$
- Phase slippage (protons 2000 times heavier than electrons) ?

$$\delta \approx \frac{\pi L}{\lambda_p} \frac{1}{\gamma^2}$$

• Few hundred meters acceleration stage possible for $E_p=1$ TeV and $\lambda_p \approx mm$

Basic Aspects

• Longitudinal growth of driving bunch due to energy spread ?

$$d \approx 2 \frac{\Delta E}{E} \frac{L}{\gamma^2}$$

- Few hundred meters possible for $E_p=1$ TeV, $\Delta E/E=0.1$ with d $\approx 100 \ \mu m$
- Proton (QCD) interactions ?

$$\lambda = \frac{1}{n\sigma}$$
 $n = 1 \cdot 10^{15} \text{ cm}^{-3} \Rightarrow \lambda > 1000 \text{ km}$

Fundamental issue: proton bunch length

Simulation Results

Ideal proton-driven PWPA accelerator

V. Yakimenko, BNL, T. Katsouleas, Duke

Wish list:

- high repetition rate
- Short proton bunches
- > Diverse physics program: pp, ep, e^+e^- , $\mu^+\mu^-$, v beams

Exciting option, but needs design from scratch. What about existing machines ?

Modulated Proton Beam

The microbunches are generated by a transverse modulation of the bunch density (transverse two-stream instability). The microbunches are naturally spaced at the plasma wavelength, and act constructively to generate a strong plasma wake. Investigated both numerically and analytically.

Propagation of a 'cut' proton bunch in a plasma. From Wei Lu, Tsinghua University

Modulated Proton Bunch

Self-modulated proton bunch resonantly driving plasma wakefields.

Seeding the correct instability

Spontaneous instability vs

Original beam (front view)

Axisymmetric mode (half of the beam contributes to on-axis field excitation)

Hosing mode (small fraction of the beam contributes to the field at a given point) Hosing Instability Suppression in Self-Modulated Plasma Wakefields J. Vieira, W. B. Mori, and P. Muggli Phys. Rev. Lett. 112, 205001 (2014)

Need to avoid hosing to produce strong fields

Drawings from K. Lotov

 $-c/\omega_p$

September 16, 2015

EAAC Workshop, Elba

Seeded instability

Phase velocity of the wake

To optimize trapping & acceleration of electrons in the wake of the protons, should match the wake phase velocity to the electron velocity.

For best e-beam parameters, inject electrons after the phase velocity has stabilized.

Pukhov et al., Phys. Rev. Lett. **107**, 145003 (2011)

of
$$(v_{ph} - c)/c, x10^{-4}$$
 (b)
 V 0
 -1
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -5
 -2
 -2
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -2
 -3
 -4
 -5
 -2
 -2
 -2
 -2
 -3
 -4
 -2
 -2
 -3
 -4
 -2
 -5
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2
 -2

Plasma Uniformity

Lotov, Pukhov, Caldwell, Phys. of Plasmas, 20, 013102 (2013)

September 16, 2015

Freezing the Modulation

... wakefield amplitude quickly drops after the beam gets modulated.

Reason: defocusing regions keep on moving along the beam and destroys the bunches.

A. Caldwell, K. V. Lotov, Phys. Plasmas 18, 13101 (2011)

September 16, 2015

Freezing the Modulation

Remedy: control of the wave phase by the plasma density profile

E_e= 6 TeV reached in simulations with modulated LHC beam

A. Caldwell, K. V. Lotov, Phys. Plasmas **18**, 13101 (2011)

AWAKE

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Use SPS proton beam as drive beam (Single bunch 3e11 protons at 400 GeV)
 - Inject electron beam as witness beam
- Proof-of-Principle Accelerator R&D experiment at CERN
 - First proton driven plasma wakefield experiment worldwide
 - First beam expected in 2016
- AWAKE Collaboration: 16 Institutes world-wide: John Adams Institute for Accelerator Science,

Budker Institute of Nuclear Physics & Novosibirsk State University CERN **Cockroft Institute** DESY Heinrich Heine University, Düsseldorf Instituto Superior Tecnico **Imperial College** Ludwig Maximilian University Max Planck Institute for Physics Max Planck Institute for Plasma Physics **Rutherford Appleton Laboratory** TRIUMF University College London Univesity of Oslo University of Strathclyde

AWAKE at CERN

Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

R Assmann et al., Plasma Physics and Controlled Fusion Vol 56, Number 8 AWAKE is installed in CNGS Facility (CERN Neutrinos to Gran Sasso)

ightarrow CNGS physics program finished in 2012

AWAKE: Experimental Program

Phase 1: Understand the physics of self-modulation instability processes in plasma.

This slide from Edda Gschwendtner (WG1 Presentation).

AWAKE Experimental Program

- Phase 1: Understand the physics of self-modulation instability processes in plasma.
- Phase 2: Probe the accelerating wakefields with externally injected electrons.

Maximum amplitude of the **accelerating field E**_z as a function of position along the plasma. Saturation of the SMI at \sim 4m.

This slide from Edda Gschwendtner (WG1 Presentation).

AWAKE Preparations

Pictures from Ans Pardons (poster)

September 16, 2015

AWAKE: Plasma Source

- Density adjustable from 10¹⁴ 10¹⁵ cm⁻³
- 10 m long, 4 cm diameter
- Plasma formed by field ionization of Rb
 - Ionization potential Φ_{Rh} = 4.177eV
 - above intensity threshold ($I_{ioniz} = 1.7 \times 10^{12} W/cm^2$) 100% is ionized.
- Plasma density = vapor density
- System is oil-heated: 150° to 200° C
 - \rightarrow keep temperature uniformity
 - \rightarrow Keep density uniformity

Grant Instruments

AWAKE Time Line

	20	13	2014	2015	201	6	2017		2018	2019	2020
Proton and laser beam- line		Installation Study, Design, Procurement, Component preparation					Data taking			Long Shutdown 2 24 months	
Experimental area		Modification, Civil Engineering and installation Study, Design, Procurement, Component preparation				ssioning	Phase 1				
Electron source and beam-line			Studies, design	Fab	rication		Installation	Commissio ning	Phase 2	2	

- 1st Phase:
 - Start in ~1 year
 - Demonstrate proton bunch modulation
- 2nd Phase:
 - Start in ~2 years
 - Demonstrate electron acceleration with GeV/m scale gradients

Continue

data taking after LS2

Beyond Phase II

Future beyond the approved & funded project

2015-2020

conceptual design for plasma based collider (eP ?).

Inform studies based on results form Phase I,II

Greatly enhanced simulation studies to understand physics in detail Develop required technologies; in particular, scalable plasma cells Investigate production of short proton bunches

2020-2022

Phase III – two cell operation.

Demonstrate that high gradients can be maintained over long distances Demonstrate a scalable plasma cell technology

Inject short, low emittance electron bunch; characterize accelerated bunch emittance

Determine energy transfer efficiency

In parallel, technical design for plasma based collider (eP ?).

Helicon cell

1m prototype in regular operation (B. Buttenschön, O. Grülke, IPP Greifswald)

Target density achieved | Uniformity under study.

Discharge cell also under study (IST, Lisbon, Imperial College)

Particle Physics Application

Are there fundamental particle physics topics for high energy but low luminosity colliders ?

I believe – yes ! Particle physicists will be interested in going to much higher energies, even if the luminosity is low.

VHEeP: A very high energy electronproton collider based on protondriven plasma wakefield acceleration

Allen Caldwell (MPI) Matthew Wing (UCL/DESY/Univ. Hamburg)

- Introduction
- Accelerator based on plasma wakefield acceleration
- Physics in very high energy *eP* collisions
- Summary and outlook

DIS 2015 Workshop — 28 April 2015

Increase of the photon-proton cross section with coherence length.

Cross sections increasing with energy -> do not require large luminosity to probe this physics.

Plasma wakefield accelerator

 $\approx 5\cdot 10^{28} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

• Emphasis on using current infrastructure, i.e. LHC beam with minimum modifications.

- Overall layout works in powerpoint.
- Need high gradient magnets to bend protons into the LHC ring.
- One proton beam used for electron acceleration to then collider with other proton beam.
- High energies achievable and can vary electron beam energy.
- What about luminosity ?
- Assume
 - ~3000 bunches every 30 mins, gives $f \sim 2 Hz$.
 - $N_p \sim 4 \times 10^{11}$, $N_e \sim 1 \times 10^{11}$
 - $\sigma \sim 4 \ \mu m$

Summary

Proton-driven plasma wakefield acceleration interesting because of large energy content of driver.

Modulation process means existing proton machines can be used

Goal for AWAKE: demonstrate modulation process and proton-driven acceleration of electrons before LS2 of the LHC

Long term prospects for proton-driven PWA exciting !