

2nd European Advanced Accelerator Concepts Workshop La Biodola, Isola D'Elba 13-19 September 2015

The ELIMED transport and dosimetry beamline for laser-driven ion beams

Francesco Romano

On behalf of the ELIMED collaboration

INFN - Laboratori Nazionali del Sud, Catania, Italy

francesco.romano@Ins.infn.it

<u>Hadrontherapy</u>: one of the most advanced and pioneering treatment modalitie (more than 40 facilities nowadays in operation)

Limitations to the hadrontherapy spread: huge dimensions complexity high costs (70 - 150 M€)

I N F N

stituto Nazionale li Fisica Nucleare

The ELIMED idea

ELIMAIA: ELI Multidisciplinary Applications of laser-lon Acceleration

ELIMED (ELI MEDical applications): the ELIMAIA section dedicated to the transport and dosimetry

Experimental area: basement

INFN

Istituto Nazionale

di Fisica Nucleare

Laser-driven beams peculiarities

• Wide angular distributions

med

Large energy spread

 Extremely high dose rate per pulse 10⁷-10⁹ Gy/min (vs 10-50 Gy/min)

New paradigms for beam dosimetry

Istituto Nazionale

di Fisica Nucleare

ELIMED beam line layout

Graphics by G. Gallo

5 PMQs Hybrid array

L.Y.

Inner Halbach trapezoidal sectors Two external hybrid arrays

Bore 36 mm (net bore 30 mm)
Outer diameter: 325 mm
Lengths: 1x160mm; 2x120mm; 2x80mm

Magnetic field features:

- 3 main magnetization directions
- Gradients: ≈ 100 T/m
- Gradient uniformity < 2% @ R = 12 mm (80% bore)
- Integrated gradient uniformity < 0.3% @ R = 12 mm (80% bore)

High Br - Low Hc

Low Br - High Hc

Stainless Steel

Screen

The tender procedure started in August

Courtesy of F. Schillaci

Beam selection and transport: Energy Selection System

med

Energy Selection System

Beamline Optics: 60 MeV proton

Quadrupoles

2

2

Position (m)

20 10

-10 -20

-30

30 20 10 € 0 -10 -20

-30 -

Input beam: Monochromatic Source size r = 20µm 10° Divergence (half-angle) *Uniform distribution in space and angle*

Courtesy of F. Schillaci

Position (m)

5

5

Energy selection

Output beam: Monochromatic Beam spot size: 10mmx30mm Uniform distribution in space and angle Divergence ≤ 0.3° (half- angle)

ELIMED test beamline @ INFN-LNS

e

med

40° LNS beamline

ELIMED R&D (prototypes)

ELIMED R&D (dosimetry)

Multi-gap chamber prototype

In collaboration with INFN section of Turin

Tested at LNS

- > 62 MeV protons (accelerated by CS)
- pulsed beam (chopper used), 500
 µs and 10 µs pulse duration
- Data analysis in progress

ELIMED R&D (dosimetry)

An innovative Faraday Cup optimized for high pulsed ion beams has been designed and realized at INFN-LNS

New solutions to optimize the charge collection efficiency

See next talk by Dr. G. Milluzzo for results...

ELIMED MonteCarlo activity

- **Design** of the application for the final **ELIMED** beamline completed in April 2015
- Simulations of the beam transport systems carried out (quadrupoles and energy selector):
 - Magnetic elements simulated and tested (geometry and field for tracking)
 - Grid map for magnetic fields simulation implemented (benchmark with reference analytical transport codes)
 - Simulation outputs compared with experimental data
- Simulation of the dosimetric system prototypes carried out
 - Faraday cup fully simulated (electric field implemented and secondary electron emission studied)

Geant4 simulations benchmark

ELIMED realization time schedule

April 2015

- Feasibility study of the PMQs system
- Code design of the Monte Carlo Geant4 application for transport and dosimetry June 2015
- Design of the ELIMED relative and absolute dosimetry system

September 2015

- Feasibility study and design of the energy selection system (ESS)
- Preliminary Monte Carlo results

March 2016

- Collection system realization
- In-vacuum/in-air beam-line design

September 2016

- ESS realization
- October 2017
- ELIMED beam-line delivery and assembled @ ELI-Beam-lines

done

Thank you for your attention