BELLA: Multi-GeV electron beam generation and outlook

Wim Leemans

BELLA Center

Accelerator Technology and Applied Physics Division

Lawrence Berkeley National Laboratory

A. Gonsalves, H.-S. Mao, K. Nakamura, S. Steinke, J. van Tilborg, B. Shaw, J. Daniels, K. Swanson, D. E. Mittelberger, C. Benedetti, C. B. Schroeder, Cs. Toth, S.S. Bulanov, J.-L. Vay, C. G. R. Geddes, R. Lehe, H. Vincenti, A. Bonatto and E. Esarey

Also: Euclid TechLabs, AASC, THALES, Coherent, CRD at LBNL, N. Bobrova, S.V. Bulanov Work supported by Office of Science, Office of HEP, US DOE Contract DE-AC02-05CH11231, NERSC and the NSF

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 101301 (2010)

Physics considerations for laser-plasma linear colliders

C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Benedetti, and W. P. Leemans Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 11 June 2010; published 4 October 2010)

- Experiments with BELLA
- Staging experiment
- Other experiments and new initiatives

BELLA laser: (still) highest rep rate PW-laser for high intensity LPA experiments

 Petawatt laser operating at up to 42 J in ~30 fs at 1 Hz

- 13.5m - 10.5x10¹⁹ Wcr Acc. fields ~ 10-50GV/m - 10.5x10¹⁹ Wcr Acc. fields ~ 10-50GV/m - 10.5x10¹⁹ Wcr Acc. fields ~ 10-50GV/m

Experiments at LBNL use the BELLA laser focused by a 14 m focal length off-axis paraboloid onto gas jet or capillary discharge targets

First experiments with BELLA were done on 1.8 cm long gas jets – e-beam limited to 2 GeV, in agreement with sims

Collaboration with Euclid TechLabs on high rep rate discharges

Previous experiments indicate that reaching higher energy gain requires operation at lower density, consistent with theory

Plasma density in the capillary discharge can be measured with group velocity delay method

Waveguide density measured using group velocity. Matched spot size measured using transverse oscillations

RERKELEY LAP

Experiment shows similar laser red-shifting as simulation Comparison used to cross-calibrate density

- Previous experiments on redshift in excellent agreement with simulation*
- Energy ~7.5J, Pulse length ~40fs, w_0 ~53 µm, L_{cap} = 9cm
- Large redshifting indicates deep depletion
- Detector response applied to simulated spectra

Office of

Science

W.P. Leemans et al., PRL 2014

RKELEY LAP

* S. Shiraishi et al., PoP 2013

Physical Sciences Division A TA

4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

- Laser (E=15 J):
 - Measured) longitudinal profile ($T_0 = 40$ fs)
 - Measured far field mode (w_0 =53 µm)
- Plasma: parabolic plasma channel (length 9 cm, n₀~6-7x10¹⁷ cm⁻³)

W.P. Leemans et al., PRL 2014

Energy	4.25 GeV	4.5 GeV
ΔE/E	5%	3.2%
Charge	~20 pC	23 pC
Divergence	0.3 mrad	0.6 mrad

Sin

Electron trapping and acceleration is complex in this density regime Simulations based on measured input parameters

Simulations show strong sensitivity of self-injection physics from plasma density

14

Mode quality and pointing stability are crucial for enabling capillary discharge experiments at ultra-high peak power

Energy in wings of beam or pointing fluctuations will cause damage

Improved target alignment and damage mitigation improves electron beam pointing and energy stability

- ~ 3 GeV beams with 16 J
- $n_e \sim 6 \times 10^{17} \text{ cm}^{-3}$, 9 cm capillary
- Capillary alignment accuracy improved
- Ceramic disk added to protect capillary

- 90% of beams now within the ~1 mrad acceptance (0.6mrad rms)
- ~1000 shots without drop in performance

Gonsalves et al., Phys. Plasmas 22, 056703 (2015)

SuperGaussian near field used in experiments reduces guiding efficacy. Compensated by higher density.

BERKELEY LAP

Office of

Science

ACCELERATOR TECHNOLOGY & ATA

Operating in the Right Plasma Density Regime is Key for the **BELLA** Experiments

Operating at the wrong density (too high or too low) leads to damage

RKELEY LAP

Laser Assisted Deepening of the Plasma Channel will be used to Provide Further Control of the Mode Guiding and Lower Density

- Inverse bremsstrahlung heats plasma and produced dynamic channel
- Optimum guiding conditions for a pulse with a=1.7 is obtained at 2.5 ns after heater pulse

N.A. Bobrova et al., Physics of Plasmas 20, 020703 (2013)

Simulations indicate 10 GeV quasi-monoenergetic beams can be obtained in ~ 10 cm capillary in non-linear regime

Office of

Science

RKELEY LAI

ACCELERATOR TECHNOLOGY & A7

Gas jet experiments with 1.5 cm jet provide insight into propagation physics and e-beam generation without external guiding structure

- **Pointing fluctuations ~0.16 mrad rms**
- Stable bunch charge (~ 10 pC)
- Reproducible energy spectrum

BERKELEY LAP

50

100

shot

0.38

0.36

2

0.045

0.04

-0.035

200

150

Staging Experiment Aims at Demonstrating Key Element of Collider Concept

W. P. Leemans and E. Esarey, Physics Today (2009).

Compact setup for staging two LPAs in sequence

TO BE RELEASED WHEN PUBLICATION IS ACCEPTED

Stage I: Turnkey gas jet operation in ionization injection regime provides **tunable** injector beams of excellent stability

Tape-driven Plasma Mirror (PM) to couple in the laser pulse driving the dark-current-free 2nd stage accelerator

A prototype two-stage system was built using a gas jet (first stage), plasma mirror and capillary discharge (stage 2) and two independent laser pulses

TO BE RELEASED WHEN PUBLICATION IS ACCEPTED

 First experiments aimed at understanding wake structure and probing it with e-beam

Improving the e-beam coupling at the entrance of stage two is essential to increase trapping fraction

LPA Capillary

TO BE RELEASED WHEN PUBLICATION IS ACCEPTED

Laser#1	Efficient injection at
	capillary entrance
Current geometry: Jet LPA, ~100 MeV, ~1mrad	

Active plasma lens based on capillary discharge provides ultrahigh gradient symmetric focusing – more than 3,000 T/m

Active plasma lens was implemented to improve trapping fraction: staging setup (version 2.0)

TO BE RELEASED WHEN PUBLICATION IS ACCEPTED

Office of Science

ACCELERATOR TECHNOLOGY & ATAP

29

Quasi-linear wake properties probed and energy gain/loss of witness beam observed

TO BE RELEASED WHEN PUBLICATION IS ACCEPTED

oF ↓ Office of Science

Simulation reproduce staging signatures at correct magnitude

TO BE RELEASED WHEN PUBLICATION IS ACCEPTED

Idining a dea noost on a dea nearly deler

oF Y Office of Science ACCELERATOR TECHNOLOGY & ATAP

31

The program aims at colliders for the HEP mission and applications with shorter term benefits

32

New initiatives on applications of LPAs have been launched – key is stability and tunability+power

Arthroscopic accelerator for biomedical applications

Lab funded

Compact MeV Thomson gamma ray source

S. G. Rykovanov, C.G.R. Geddes et al., J. Phys. B, 47 234013 (2014) **DOE funded** Laser plasma accelerator driven soft x-ray FEL

C. B. Schroeder et al. FEL Proc (2013)

Moore Foundation funded

- Need high average power ultrafast system
 - Commercial 100kW, 35% wall plug efficient fiber lasers available, but CW
 - Ultrafast fiber lasers peak power limited to ~1mJ in <10 fs (!)

We are developing Innovative laser concepts under the newly launched DOE-HEP Stewardship program

34

How a pulse train is stacked into a single pulse

We are proposing BELLA-i and k-BELLA initiatives as part of the development of BELLA towards a user facility

Summary

- BELLA facility is up and running and has set new records on laser performance and electron beam energy (up to 4.3 GeV) from an LPA
- We are implementing novel concepts to reach 10 GeV, generation of ultra-cold beams and focusing on stability
- Staging experiment shows feasibility mode matching is key issue
 - Planning experiment to demonstrate 5 GeV boost on 5 GeV beam
- New initiatives on γ-ray source, FEL and medical applications
- We are proposing
 - BELLA-i as an important addition to the facility
 - k-BELLA as a new facility for high average power applications
- We are discussing with DOE making BELLA a user facility
- Presented at DOE-FES Townhall, July 1, 2015 white papers available

Office of

Science

• 2015 APS-DPP evening meeting and Workshop in January 2016 for community input

We are planning a workshop on science with BELLA-i

January 20-22, 2016 at LBNL

Please contact me or Sven Steinke if you would like more information and or want to attend

BELLA Center staff (FY14-15)

Scientific Staff:

Stepan Bulanov

Names in blue are at U.C. Berkeley

Prof. Andy Roberts

Wim Leemans

Kei Nakamura

Carlo Benedetti

Csaba Toth

Cameron Geddes

Eric Esarey Carl Schroeder

Jean-Luc Vay

Hann-Shin Mao

PhD, Masters, undergrad students:

Anthony Gonsalves Jeroen van Tilborg

Chris Pieronek Daniel Mittelberger Brian Shaw

Julius Huiit.

New PhD students: Fumika Isono, Blagoje Djordevic

Engineering & Technical Support:

Dave Evans Don Syversrud

Mark Kirkpatrick Tyler Sipla

Nathan Ybarrolaza Greg Mannino

Aalhad Deshmukh Art Magana

June 2015

Joe Riley Ken Sihler Martha Condon

Nicholas Matlis

Sven Steinke

Administrative Support:

39

