

Quantitative X-Ray Phase-Contrast Microtomography from a Compact Laser Driven Betatron Source

Johannes Wenz^{1,2},

Simone Schleede³, Konstantin Khrennikov^{1,2}, Pierre Thibault³, Matthias Heigoldt¹, M. Bech³, Antonia Popp¹, Franz Pfeiffer³, Ferenc Krausz^{1,2}, Stefan Karsch^{1,2}

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
Technische Universität München, James Franck-Straße 1, 85748 Garching, Germany

EAAC 2015, La Biodola, Isola d'Elba

J. Wenz et al., Nature Comm. DOI:10.1038/ncomms8568 (2015

Sources of X-Ray Radiation from LWFA electrons

Based on electron oscillation due to

External magnetic field

➔ Undulator radiation

External laser field

→ Thomson scattering

Internal EM fields

→ Betatron radiation

Betatron Radiation

Electric Fields in the Plasma Wave

17.09.2015

Experimental Setup

Betatron Beam Profile

Single-Shot Characterization of the Betatron Spectrum

7

Sidky et al, J. Appl. Phys. 97, 124701 (2005)

Spectrum Reconstruction

Reconstructed Betatron Spectrum

17.09.2015

Single Pixel Counting–Method with low charge bunches

Angular resolved Photon Energies

EAAC 2015, Elba

Characterization of the Source Size

Source size reconstruction

Betatron radiation source characteristics

peak brilliance: 2x10²² ph s⁻¹ mm⁻² mrad⁻²/0.1% BW (assuming pulse length of 10 fs)

Previous work

First X rays betatron ! contrast images

S. Fourmaux *et al.*, ! Opt. Lett. **36**, 13 (2011)

S. Kneip *et al.*, Appl. Phys. ! Lett. **99**, 093701 (2011)

V. Malka *et al.*, Nature Physics **4** (2008)! E. Esarey et al., Rev. Mod. Phys. **81**, 1229 (2009) S. Corde et al., Rev. of Modern Physics **85**, 1 (2013)

Propagation-based Phase-Contrast Imaging

Experimental Setup- Phase Contrast Imaging

Going beyond the resolution of your detector

Adding and sub-sampling the 100 shots:

Single shot imaging

Phase contrast tomography of biological sample

data analysis by the group of F. Pfeiffer

Quantitative Phase Map and Reconstruction

The transport-of intensity-equation (TIE) relates the edge-enhanced image at the detector (a) to the phase map of the insect

tomographic reconstruction of 2-D projections yields cuts through sample (edge anhancement (a) and phase images (b,c))

3D rendering of the fly

From background (void) of the reconstructed sample one can estimate a conservative limit for our measurement sensitivity of the electron density **sensitivity of 0.1x10²³ cm⁻³**

Reentrance setup for water containing samples

Water containing samples

Phase contrast image

17.09.2015

Hamon iberico

X-Ray imaging, averaged over 50 shot

600

400

1200

1000

800

Summary

LWFA electrons are able to provide highly brilliant X-Ray sources enabling phase contrast tomography

Intrinsic properties of LWFA Betatron source: Compact, high spatial coherence, low spectral fluctuation well suited for multi-exposure scans, fs duration

Source and spectral characterization enables reconstruction of absolute electron densities complete tomography scan (1500 laser shots)

Thank you very much for your attention!!!

J. Wenz et al., Nature Comm. DOI:10.1038/ncomms8568 (2015)

17.09.2015