Cooling of relativistic electron beams in intense laser pulses: chirps and radiation spectra

S. R. Yoffe, A. Noble, A. MacLeod, and D. A. Jaroszynski

SCAPA • SUPA • University of Strathclyde

EAAC 2015, Isola d’Elba
13th – 19th September, 2015
Outline

1. Introduction to radiation reaction
2. Importance and inclusion of quantum effects
3. Electron beam cooling in a collision with an intense laser pulse
4. Chirped laser pulses
5. Stochastic single-photon-emission model
6. Conclusions and future work.
Classical radiation reaction

- The motion of a charged particle in an external electromagnetic field is governed by the Lorentz force,

\[\ddot{x}^a = -\frac{q}{m} F^a_b \dot{x}^b, \quad \text{or} \quad \frac{dp}{dt} = q(E + v \times B). \] \hspace{1cm} (1)

- However, an accelerating charge radiates energy (and momentum) — *How does this emission affect the dynamics of the particle?*

- The *radiation reaction* force responsible for the particle’s recoil is typically very small compared to the applied force, and so neglected.

Note: Work in Heaviside-Lorentz units with $\epsilon_0 = 1$, and take $c = 1$.
The motion of a charged particle in an external electromagnetic field is governed by the Lorentz force,

\[\ddot{x}^a = -\frac{q}{m} F^a_b \dot{x}^b, \quad \text{or} \quad \frac{d\mathbf{p}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}). \]

However, an accelerating charge radiates energy (and momentum) — How does this emission affect the dynamics of the particle?

The radiation reaction force responsible for the particle’s recoil is typically very small compared to the applied force, and so neglected.

But... not always:
As the field becomes strong, the charge radiates more and radiation reaction may become important.
- Future high-intensity laser facilities (such as ELI).

Note: Work in Heaviside-Lorentz units with \(\epsilon_0 = 1 \), and take \(c = 1 \).
Classical descriptions of radiation reaction

- **Lorentz–Abraham–Dirac equation:**

 \[\ddot{x}^a = -\frac{q}{m} F^a_b \dot{x}^b + \tau \Delta^a_b \ddot{x}^b, \]

 where \(\tau = q^2/6\pi m \simeq 6 \times 10^{-24} \text{ s} \) is the characteristic time of the electron, and \(\Delta^a_b = \delta^a_b + \dot{x}^a \dot{x}_b \) preserves the mass-shell condition.

- **Jerk** \(\dddot{x} \) leads to unphysical *runaway solutions* and *preacceleration*.

S. R. Yoffe et al. — EAAC 2015 — 15/09/2015
Classical descriptions of radiation reaction

▶ Lorentz–Abraham–Dirac equation:

\[
\ddot{x}^a = -\frac{q}{m} F^a_b \dot{x}^b + \tau \Delta^a_b \ddot{x}^b,
\]

where \(\tau = \frac{q^2}{6\pi m} \approx 6 \times 10^{-24} \) s is the characteristic time of the electron, and \(\Delta^a_b = \delta^a_b + \dot{x}^a \dot{x}_b \) preserves the mass-shell condition.

▶ Jerk \(\ddot{x} \) leads to unphysical runaway solutions and preacceleration.

▶ Landau–Lifshitz: Treat radiation reaction as a small perturbation:

\[
\ddot{x}^a = -\frac{q}{m} F^a_b \dot{x}^b - \tau \frac{q}{m} \left[\dot{x}^c \partial_c F^a_b \dot{x}^b - \frac{q}{m} \Delta^a_b F^b_c F^c_d \dot{x}^d \right].
\]

Good: No runaway solutions or preacceleration issues.

Bad: Purely classical description.

▶ Often claimed that Landau–Lifshitz is valid provided only that quantum effects can be ignored [Spohn 2000; Kravets et al. 2013].
Importance of quantum effects

Quantum effects can typically be ignored provided that the observed field \hat{E} is much smaller than the critical field $E_S = 1.3 \times 10^{18} \text{ V/m}$,

$$\chi = \frac{\hat{E}}{E_S} \ll 1.$$ \hspace{1cm} (4)

Upcoming facilities (such as ELI) will produce extremely strong fields in which both RR and quantum effects will play a dominant role.

Classically, can radiate small amounts of energy at all frequencies.
Importance of quantum effects

- Quantum effects can typically be ignored provided that the observed field \hat{E} is much smaller than the critical field $E_S = 1.3 \times 10^{18} \text{ V/m}$,

$$\chi = \frac{\hat{E}}{E_S} \ll 1.$$

- Upcoming facilities (such as ELI) will produce extremely strong fields in which both RR and quantum effects will play a dominant role.

- **Classically**, can radiate small amounts of energy at *all* frequencies.

- In the **quantum** picture, must radiate entire quanta of energy.
 - Limits max. photon energy and suppresses high-frequency emission.

- Expected that **classical theories overestimate radiation reaction** in regimes where quantum effects become important (as they contain emission at all frequencies).
Semi-classical extension to Landau–Lifshitz

- **Semi-classical model:**
 Scale the radiation reaction force to compensate for this overestimation as χ increases [Kirk, Bell & Arka 2009]

 $$\tau \rightarrow g(\chi)\tau,$$ \hspace{1cm} (5)

 where $g(\chi)$ involves a non-trivial integral over Bessel functions.

- Use the approximation $g(\chi) = (1 + 12\chi + 31\chi^2 + 3.7\chi^3)^{-4/9}$ found by Thomas *et al.* (2012).

- Expect semi-classical model to be valid provided that quantum effects remain weak, $\chi^2 \ll 1$.
Collision with a high-intensity plane-wave laser

- Define the basis vectors \(\{k, \epsilon, \lambda, \ell\} \), where \(k \) is the laser (null) wavevector and \(\epsilon, \lambda \) are orthogonal polarisation vectors.

- Work with the coordinates

\[
\phi = -k \cdot x = \omega t - k \cdot x, \quad \xi = \epsilon \cdot x, \quad \sigma = \lambda \cdot x, \quad \psi = -\ell \cdot x. \tag{6}
\]

- Electromagnetic field tensor (arbitrary polarisation):

\[
\frac{q}{m} F^{a}_{\ b} = a_\epsilon(\phi)(\epsilon^{a} k_{b} - k^{a} \epsilon_{b}) + a_\lambda(\phi)(\lambda^{a} k_{b} - k^{a} \lambda_{b}). \tag{7}
\]
Collision with a high-intensity plane-wave laser

- Define the basis vectors \(\{ k, \epsilon, \lambda, \ell \} \), where \(k \) is the laser (null) wavevector and \(\epsilon, \lambda \) are orthogonal polarisation vectors.

- Work with the coordinates

\[
\phi = -k \cdot x = \omega t - k \cdot x, \quad \xi = \epsilon \cdot x, \quad \sigma = \lambda \cdot x, \quad \psi = -\ell \cdot x. \tag{6}
\]

- Electromagnetic field tensor (arbitrary polarisation):

\[
\frac{q}{m} F^a _b = a_\epsilon(\phi) (\epsilon^a k_b - k^a \epsilon_b) + a_\lambda(\phi) (\lambda^a k_b - k^a \lambda_b). \tag{7}
\]

- Linearly-polarised, \(N \)-cycle plane-wave pulse (length \(L = 2\pi N \)):

\[
a_\epsilon(\phi) = \begin{cases}
 a_0 \sin(\phi) \sin^2(\pi \phi/L) & \text{for } 0 < \phi < L, \\
 0 & \text{otherwise},
\end{cases} \quad a_\lambda(\phi) = 0. \tag{8}
\]
Collision with a high-intensity laser pulse

Results

Electron beam: Initial Gaussian with 20% spread around ~ 1 GeV.
Laser: $Na_0^2 = 9248$

$\text{e.g. } N = 20 \text{ (}a_0 = 21.5\text{)} \text{ and } \lambda = 800 \text{ nm}: 27 \text{ fs (FWHM)}, I = 2 \times 10^{21} \text{ W/cm}^2.$
Collision with a high-intensity laser pulse

Results

Electron beam: Initial Gaussian with 20% spread around \(\sim 1 \text{ GeV} \).

Laser: \(Na_0^2 = 9248 \)

\(e.g. \ N = 20 \ (a_0 = 21.5) \) and \(\lambda = 800 \text{ nm} \): 27 fs (FWHM), \(I = 2 \times 10^{21} \text{ W/cm}^2 \).

Classical predictions depend only on the fluence \(\mathcal{E} \propto Na_0^2 \) [Neitz & Di Piazza 2014].

Semi-classical predictions sensitive to \(a_0 \) directly.
Linear vs. circular polarisation

$N = 20$, $a_0 = 100$: $I_{\text{lin}} = 4.28 \times 10^{22}$ W/cm2 and $I_{\text{circ}} = 2.14 \times 10^{22}$ W/cm2

- Circular: $a_\epsilon(\phi) = \frac{a_0}{\sqrt{2}} \sin(\phi) \sin^2\left(\frac{\pi \phi}{L}\right)$ and $a_\lambda(\phi) = \frac{a_0}{\sqrt{2}} \cos(\phi) \sin^2\left(\frac{\pi \phi}{L}\right)$. Reduced peak intensity, but same fluence.

- Classical: Final state prediction insensitive to polarisation change.

- Semi-classical: Reduced peak intensity \rightarrow less reduction in cooling.
Chirped laser pulses

- Semi-classical beam cooling sensitive to how energy is distributed within the pulse, not just the total energy (as in the classical case)

- Chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media
 → Investigate their effect on beam dynamics

- Chirped pulse length for N-cycle pulse: $L_\Delta = \frac{2\pi N}{1 + \Delta/2}$.

- Linearly chirped phase: $\eta(\phi; \Delta) = \phi \left(1 + \frac{\phi \Delta}{2 L_\Delta} \right)$.

- Pulse shape function generalised to include a chirp:

$$a_\epsilon(\phi; \Delta) = \begin{cases} a_0 \sqrt{1 + \Delta/2} \sin(\eta) \sin^2 \left(\frac{\pi \phi}{L_\Delta} \right) & \text{for } 0 < \phi < L_\Delta. \\ 0 & \text{otherwise.} \end{cases}$$

(9)

Factor $\sqrt{1 + \Delta/2}$ ensures that chirp rate Δ does not change fluence.
Chirped laser pulses

Results for $N = 20$ ($a_0 = 21.5$) pulses with chirp rate $\Delta = \pm 0.5$

- Confirms classical prediction for final state independent of chirp.
- **Positive chirp:** shorter duration so peak intensity increases

 Higher $\chi \rightarrow$ increased RR suppression \rightarrow less beam cooling
- **Negative chirp:** peak intensity decreases ...

- **Chirping the laser pulse contributes a smaller effect than going from a classical to a semi-classical description** [SRY et al. 2015].
Electron continuously absorbing and emitting laser photons (κ)

$$p^a + n_{\text{abs}} k^a = p'^a + n_{\text{em}} k^a + \kappa^a \implies \Omega = \Omega' + \tilde{\Omega}.$$ (10)

($n = n_{\text{abs}} - n_{\text{em}}$ is the net number of laser photons absorbed.)
Stochastic single-photon-emission model

Electron continuously **absorbing** and **emitting** laser photons \((\kappa) \)

\[
p^a + n_{\text{abs}} \kappa^a = p'^a + n_{\text{em}} \kappa^a + \kappa^a \implies \Omega = \Omega' + \tilde{\Omega}. \tag{10}
\]

\((n = n_{\text{abs}} - n_{\text{em}} \text{ is the net number of } laser \text{ photons absorbed.})\)

1. Diff. probability \(dW = \Gamma \, d\phi \) [Ritus 1985; Green & Harvey 2014]:

\[
\Gamma = \int_{0}^{\Omega} d\tilde{\Omega} \, P(\Omega, \tilde{\Omega}), \quad \text{where} \quad \Omega = -\frac{k^a p_a}{m} \quad \text{and} \quad \tilde{\Omega} = -\frac{k^a \kappa_a}{m}.
\]

(Emission probability \(P(\Omega, \tilde{\Omega}) \) depends on the field strength.)

2. Propagate with Lorentz force; emit photon if \(r \in [0, 1) < dW \).

3. Find \(\tilde{\Omega} \) such that \(\int_{0}^{\tilde{\Omega}} dx \, P(\Omega, x) = \zeta \Gamma, \) with \(\zeta \in [0, 1) \).
Stochastic single-photon-emission model

Model validation: $N = 10$ and $a_0 = 100$ [27 fs with peak $I_{\text{circ}} = 2.14 \times 10^{22} \text{ W/cm}^2$]

- Ensemble of 15 000 identical initial electrons (with $\gamma_0 = 2 000$).
- Despite $\chi \simeq 0.5$, the semi-classical prediction is in good agreement with the average of the stochastic model.
- Single stochastic trajectory shows discrete photon emission.
Stochastic single-photon-emission model

Backscattered radiation: \(N = 10 \) and \(a_0 = 100 \) with circular polarisation

- **Statistics:** Ensemble of 15 000 electrons; sample of 299 412 photons.
- Compatible with \(2\gamma^2 \approx 10^7 \) laser frequency upshift.
- Peak average photon energy \(\sim 70 \text{ MeV} \).
Stochastic model with chirped pulses
Backscattered radiation: $N = 10$ and $a_0 = 100$ with circular polarisation and $|\Delta| = 0.5$

- **Statistics**: Sample of 263,031 and 352,065 photons.
- **Negative chirp**: Increased photon number, reduced photon energy.
- **Chirp** does not alter the spectral cutoff.
Conclusions

- Future laser facilities will operate in regimes where not only radiation reaction but quantum effects will also play a role.
- Semi-classical extension to LL predicts reduced beam cooling.
- Quantum models of radiation reaction are sensitive to variation in peak intensity, not just total fluence.
- Modified energy distribution using chirps and polarisation — Only a small change.
- Stochastic model shows good agreement to semi-classical model.
- Chirp does not alter radiation frequency cutoff, but...
- Negative chirp shown to increase photon emission and cooling.

Future work:
- Electron beam cooling with stochastic model.
- Include two-photon emission and pair production.
- Transverse pulse structure.
Acknowledgements

Yevgen Kravets, David Burton, Chris Harvey, Phil Tooley, Bernhard Ersfeld and Ranaul Islam

The ALPHA-X collaboration

http://phys.strath.ac.uk/alpha-x/pub/People/people.html
References
