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Classical radiation reaction

▶ The motion of a charged particle in an external electromagnetic field is
governed by the Lorentz force,

ẍa = − q

m
F a

b ẋ
b, or dp

dt
= q(E+ v× B). (1)

▶ However, an accelerating charge radiates energy (and momentum)
— How does this emission affect the dynamics of the particle?

▶ The radiation reaction force responsible for the particle’s recoil is
typically very small compared to the applied force, and so neglected.

▶ But… not always:
As the field becomes strong, the charge radiates more and radiation
reaction may become important.

▶ Future high-intensity laser facilities (such as ELI).

Note: Work in Heaviside-Lorentz units with ϵ0 = 1, and take c = 1.
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Classical descriptions of radiation reaction
▶ Lorentz–Abraham–Dirac equation:

ẍa = − q

m
F a

b ẋ
b + τ∆a

b
…
x b, (2)

where τ = q2/6πm ≃ 6× 10−24 s is the characteristic time of the
electron, and ∆a

b = δab + ẋaẋb preserves the mass-shell condition.
▶ Jerk …

x leads to unphysical runaway solutions and preacceleration.

▶ Landau–Lifshitz: Treat radiation reaction as a small perturbation:

ẍa = − q

m
F a

b ẋ
b − τ

q

m

[
ẋc∂cF

a
b ẋ

b − q

m
∆a

bF
b
c F

c
d ẋ

d
]
. (3)

Good: No runaway solutions or preacceleration issues.
Bad: Purely classical description.

▶ Often claimed that Landau–Lifshitz is valid provided only that
quantum effects can be ignored [Spohn 2000; Kravets et al. 2013].
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Importance of quantum effects

▶ Quantum effects can typically be ignored provided that the observed
field Ê is much smaller than the critical field ES = 1.3× 1018 V/m,

χ =
Ê

ES
≪ 1. (4)

▶ Upcoming facilities (such as ELI) will produce extremely strong fields
in which both RR and quantum effects will play a dominant role.

▶ Classically, can radiate small amounts of energy at all frequencies.

▶ In the quantum picture, must radiate entire quanta of energy.
▶ Limits max. photon energy and suppresses high-frequency emission.

▶ Expected that classical theories overestimate radiation reaction in
regimes where quantum effects become important (as they contain
emission at all frequencies).
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Semi-classical extension to Landau–Lifshitz

▶ Semi-classical model:
Scale the radiation reaction force to compensate for this
overestimation as χ increases [Kirk, Bell & Arka 2009]

τ → g(χ)τ, (5)

where g(χ) involves a non-trivial integral over Bessel functions.

▶ Use the approximation g(χ) = (1 + 12χ+ 31χ2 + 3.7χ3)−4/9 found by
Thomas et al. (2012).

▶ Expect semi-classical model to be valid provided that quantum effects
remain weak, χ2 ≪ 1.
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Collision with a high-intensity plane-wave laser
▶ Define the basis vectors {k, ϵ, λ, ℓ}, where k is the laser (null)

wavevector and ϵ, λ are orthogonal polarisation vectors.
▶ Work with the coordinates

ϕ = −k · x = ωt− k · x︸ ︷︷ ︸
phase

, ξ = ϵ · x, σ = λ · x︸ ︷︷ ︸
transverse coordinates

, ψ = −ℓ · x. (6)

▶ Electromagnetic field tensor (arbitrary polarisation):
q

m
F a

b = aϵ(ϕ)
(
ϵakb − kaϵb

)
+ aλ(ϕ)

(
λakb − kaλb

)
. (7)

▶ Linearly-polarised, N-cycle plane-wave pulse (length L = 2πN ):

aϵ(ϕ) =

{
a0 sin(ϕ) sin2(πϕ/L) for 0 < ϕ < L,

0 otherwise, aλ(ϕ) = 0. (8)
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Collision with a high-intensity laser pulse
Results
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Electron beam: Initial Gaussian with 20% spread around ∼ 1 GeV.
Laser: Na20 = 9248

e.g. N = 20 (a0 = 21.5) and λ = 800 nm: 27 fs (FWHM), I = 2× 1021 W/cm2.

Classical predictions depend only on the fluence E ∝ Na20 [Neitz & Di Piazza 2014].
Semi-classical predictions sensitive to a0 directly.
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Linear vs. circular polarisation
N = 20, a0 = 100: Ilin = 4.28× 1022 W/cm2 and Icirc = 2.14× 1022 W/cm2
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▶ Circular: aϵ(ϕ) = a0√
2
sin(ϕ) sin2(πϕ

L
) and aλ(ϕ) = a0√

2
cos(ϕ) sin2(πϕ

L
).

Reduced peak intensity, but same fluence.
▶ Classical: Final state prediction insensitive to polarisation change.
▶ Semi-classical: Reduced peak intensity −→ less reduction in cooling.
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Chirped laser pulses

▶ Semi-classical beam cooling sensitive to how energy is distributed
within the pulse, not just the total energy (as in the classical case)

▶ Chirps occur in both the production of high-intensity pulses (CPA)
and the propagation of pulses in media
−→ Investigate their effect on beam dynamics

▶ Chirped pulse length for N-cycle pulse: L∆ = 2πN/(1 + ∆/2).
▶ Linearly chirped phase: η(ϕ;∆) = ϕ

(
1 + ϕ∆/2L∆

)
.

▶ Pulse shape function generalised to include a chirp:

aϵ(ϕ;∆) =

{
a0

√
1 + ∆/2 sin(η) sin2(πϕ/L∆) for 0 < ϕ < L∆.

0 otherwise.
(9)

Factor
√

1 + ∆/2 ensures that chirp rate ∆ does not change fluence.
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Chirped laser pulses
Results for N = 20 (a0 = 21.5) pulses with chirp rate ∆ = ±0.5
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▶ Confirms classical prediction for final state independent of chirp.
▶ Positive chirp: shorter duration so peak intensity increases

Higher χ −→ increased RR suppression −→ less beam cooling
▶ Negative chirp: peak intensity decreases …
▶ Chirping the laser pulse contributes a smaller effect than going from a

classical to a semi-classical description [SRY et al. 2015].
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Stochastic single-photon-emission model

p + nk  
p′

∙

▶ Electron continuously absorbing and emitting laser photons (k)

pa + nabsk
a = p′a + nemk

a + κa =⇒ Ω = Ω′ + Ω̃. (10)

(n = nabs − nem is the net number of laser photons absorbed.)

1. Diff. probability dW = Γdϕ [Ritus 1985; Green & Harvey 2014]:

Γ =

∫ Ω

0

dΩ̃ P (Ω, Ω̃), where Ω = −k
apa
m

and Ω̃ = −k
aκa

m
.

(Emission probability P (Ω, Ω̃) depends on the field strength.)
2. Propagate with Lorentz force; emit photon if r ∈ [0, 1) < dW .
3. Find Ω̃ such that

∫ Ω̃

0
dx P (Ω, x) = ζΓ, with ζ ∈ [0, 1).
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Stochastic single-photon-emission model
Model validation: N = 10 and a0 = 100

[
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▶ Ensemble of 15 000 identical initial electrons (with γ0 = 2000).
▶ Despite χ ≃ 0.5, the semi-classical prediction is in good agreement

with the average of the stochastic model.
▶ Single stochastic trajectory shows discrete photon emission.
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Stochastic single-photon-emission model
Backscattered radiation: N = 10 and a0 = 100 with circular polarisation
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▶ Statistics: Ensemble of 15 000 electrons; sample of 299 412 photons.
▶ Compatible with 2γ2 ≃ 107 laser frequency upshift.
▶ Peak average photon energy ∼ 70 MeV.
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Stochastic model with chirped pulses
Backscattered radiation: N = 10 and a0 = 100 with circular polarisation and |∆| = 0.5
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▶ Statistics: Sample of 263 031 and 352 065 photons.
▶ Negative chirp: Increased photon number, reduced photon energy.
▶ Chirp does not alter the spectral cutoff.
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Conclusions

▶ Future laser facilities will operate in regimes where not only radiation
reaction but quantum effects will also play a role.

▶ Semi-classical extension to LL predicts reduced beam cooling.
▶ Quantum models of radiation reaction are sensitive to variation in

peak intensity, not just total fluence.
▶ Modified energy distribution using chirps and polarisation

— Only a small change.
▶ Stochastic model shows good agreement to semi-classical model.
▶ Chirp does not alter radiation frequency cutoff, but…
▶ Negative chirp shown to increase photon emission and cooling.
▶ Future work:

▶ Electron beam cooling with stochastic model.
▶ Include two-photon emission and pair production.
▶ Transverse pulse structure.
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