

Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators

A. Knetsch¹, G. Wittig¹, O. Karger¹, H. Groth¹, G.G. Manahan², Y. Xi³, A. Deng³, J. B. Rosenzweig³, D.L. Bruhwiler⁴, G. Andonian^{2,5}, G. Xia⁶, D. Jaroszynski², Z.M. Sheng^{2,}, J. Smith⁷, S. P. Jamison⁴, B. Hidding^{1,2}

¹ Institute of Experimental Physics, University of Hamburg, ² University of Strathclyde, SCAPA, SUPA, ³ Particle Beam Physics Laboratory, University of California, Los Angeles,⁴ RadiaSoft LLC, USA, ⁵RadiaBeam Technologies, ⁶ University of Manchester, UK,⁷TechX UK Ltd ⁸ Cockroft Institute, Daresbury, UK.

EAAC 2015

LAOLA Laboratory for Laser- and beam-driven plasma Acceleration

The underdense photocathode PWFA "Trojan Horse"

PRL 108, 035001 (2012)

)12) PHYSICAL REVIEW LETTERS

TERS 20 JANUARY 2012

- Injection process decoupled from acceleration
- High quality beams
- Extremely low emittances ~ 10⁻⁸ m rad

Ultracold Electron Bunch Generation via Plasma Photocathode Emission and Acceleration in a Beam-Driven Plasma Blowout

B. Hidding,^{1,2} G. Pretzler,² J. B. Rosenzweig,¹ T. Königstein,² D. Schiller,¹ and D. L. Bruhwiler³

¹Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA ²Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany ³Tech-X Corporation, Boulder, Colorado 80303, USA (Received 30 March 2011; published 17 January 2012)

The proof of concept E210 experiment at Facet

Q _{bunch}	Up to 3 nC
I _{peak}	30 kA
Energy	23 GeV

- Well suited driver beam
- LIT medium: H₂ pre-ionized by laser
- HIT medium: He

Ionization corridor hydrogen and helium

Dark current suppression (see poster session)

- Dark current reduction studied in simulations[1] and experiment
- Ionization by strong driver beams or strong wakefields[2] can ionize Helium and lead to unwanted dark current
- Driver bunch charge reduction is one possible measure for dark current suppression

[1] G. G. Manahan et al., submitted [2] A. Martinez et al., PRL 2013

A. Knetsch | 17.09.2015 | 2nd EAAC Workshop 2015 | 5

- Assume weak driver beam
- Stay in blowout regime

 $n_{b} > n_{0}$

 \tilde{Q} > 1

$$\tilde{Q} = N_{\rm b}k_{\rm p}^3/n_{\rm e}$$

Trapping condition [3]

- Assume weak driver beam
- Stay in blowout regime

 $n_{b} > n_{0}$

 \tilde{Q} > 1

$$\tilde{Q} = N_{\rm b}k_{\rm p}^3/n_{\rm e}$$

Trapping condition [3]

Phase velocity reduction on a soft density downramp

- Blowout expands on downramp due to an increasing plasma wavelength
- Decreased phase velocity on ramp facilitates trapping
- No Trapping outside of downramp region
 → Dark current supression
- Enabeling underdense photocathode PWFA for a wider range of driver beams

[4] G. Fubiani et al., Phys. Rev. E 73, 026402 (2006).

Avoid Downramp injection

Avoid downramp injection into first blowout

 $k_{p} \frac{n}{|dn/dz|} > 1 \quad [5]$

• DR Injection into subsequent blowout possible

concept

Simulation parameters

Laser	
parameter	
a ₀	0.02
w ₀	6 µm
τ	20 fs

Medium	H ₂ 13 % (pre- ionized) He 87 %		
		Driver bunch	
n _i 1	1.5e17 cm ⁻³	Q	200 pC
		σ_r / σ_z	6 µm / 7 µm
n _f 0.6e17 cm ⁻³	0.6e17 cm ⁻³		
		I _{peak}	3.4 kA
L 50 µm	50 µm		
		$ ilde{Q}$	2-2.45

A. Knetsch | 17.09.2015 | 2nd EAAC Workshop 2015 | 11

Simulation results

- No trapped electrons without downramp
- Downramp-assisted case: 11 pC trapped
- Norm. rms emittance saturates at 5x10⁻⁸ m rad
- After 7 mm propagation 62 MeV

Slice values

Summary

- Excellent tool for dark current suppression
- Witness bunch is stretched longitudinally
- Downramp injection into subsequent blowout likely
- Emittances compareable to the straight forward trojan horse PWFA achieveable.
- Downramp-assisted trojan horse PWFA can significantly lower the requirement for the driver beam in peak current

Thanks ?

Questions ?

A. Knetsch | 17.09.2015 | 2nd EAAC Workshop 2015 | 15