

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

Yuri Saveliev

on behalf of VELA and CLARA teams

STFC, ASTeC, Cockcroft Institute Daresbury Lab., UK

Outline

- VELA (Versatile Electron Linear Accelerator)
- CLARA (Compact Linear Accelerator for Research and Applications) – ongoing project
- CLARA Front End near future developments
- Machines suitability for advanced accelerators studies

VELA schematic

RF Photoelectron Gun

- former Alpha-X 2.5 cell S-band cavity;
- 3GHz;
- Cathode Copper;
- Beam momentum : up to ~5.1MeV/c
- Bunch charge : up to 250pC

PI laser

- Ti:Sapphire ; 266nm; 0.2-200uJ on cathode (500uJ after upgrade);
- 10Hz nominal; 1-400Hz available
- 180fs FWHM; laser spot size on cathode ~0.5mm

RF source

- Thales TH2157 klystron; 10MW
- Scandinova modulator : solid state, 250kV, 0.5-3us, 1-400Hz
 TDC (Transverse Deflecting Cavity)
- S-band 3GHz; copper; 9-cell
- Transverse kick ~ 5MV

VELA – BA1 (Beam Area 1)

VELA: some experimental data

- Bunch is very much dominated by space charge
- Emittance : 2-3um at 100pC and 6-7um at 250pC
- Bunch length ~10ps RMS
- Momentum spread 1.2-1.4% RMS
- Minimal beam sizes : ~0.2mm (100pC); ~0.5mm (250pC)

VELA summary :

- beam parameters are not particularly exciting for advanced accelerator tests at the moment
- Experimental beam area is far away from the RF gun and the beam is space charge dominated
- No means for bunch longitudinal compression
- Still Several experiments on advanced acceleration techniques are ongoing and planned

Science & Technology

acilities Council

- ... and the good news :
- CLARA front end is coming soon

CLARA Layout

CLARA Parameters

Parameters have been generated to cover **3 different operating modes**.

		Operating Modes	
Parameter	Seeding	SASE	Ultra-short
Max Energy (MeV)	250	250	250
Macropulse Rep Rate (Hz)	1-100	1-100	1-100
Bunches/macropulse	1	1	1
Bunch Charge (pC)	250	250	20-100
Peak Current (A)	125-400	400	~ 1000
Bunch length (fs)	850–250 (flat-top)	250 (rms)	<25 (rms)
Norm. Emittance (mm-mrad)	≤ 1	≤ 1	≤ 1
rms Energy Spread (keV)	25	100	150
Radiator Period (mm)	27	27	27

FEL output wavelengths from 400 nm to 100 nm

- Can make use of 800 nm laser for harmonic generation experiments
- Can use well established laser diagnostics for single shot pulse length measurements
- No need for long photon beamlines, can deflect by 90°

CLARA Front End Schematic

VELA + CLARA Phase 1 (2015)

- Bunch compression in the dog-leg section
- Bunch is still influenced by space charge
- Emittance : 2-4um at 100pC and ~10um at 250pC

Technology

ouncil

- Bunch length \leq 0.3ps RMS
- Momentum spread ~1% RMS
- Minimal beam sizes : ≤ 0.1mm

CLARA FE / VELA beam at 55MeV/c; 250pC

(GPT simulations)

Longitudinal phase-space [MeV/c v ps]

Transverse shape [mm v mm]

Longitudinal profile [A v ps]

Summary

- Experimental facilities at Daresbury : **VELA** now and **VELA+CLARA FE** in near future (commissioning in 2016)
- Both are not designed specifically for advanced accelerators studies but both can be used for those studies
- Sub-ps, >100pC electron bunches can be generated
- Multi-TW laser is available in user area for a variety of laser and laser/ebeam based experiments
- Large easy access vacuum chamber can fit a variety of experimental arrangements
- Second beam area (BA2) is also available for development to accommodate a range of experiments
- ASTeC and CI aim to pursue a programme of advanced accelerator studies