

THz-based acceleration

Franz X. Kärtner

Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany Ultrafast Optics and X-Rays Division

Department of Physics and The Hamburg Center for Ultrafast Imaging, University of Hamburg, Germany and

Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, MIT, USA

EAAC, Elba: September 13 - 18, 2015

Acknowledgment

Students:

Koustuban Ravi, Frederike Ahr, Ronny Huang, Hong Ye, Giulio Rossi, Shi Hsuan Chia, Yudong Yang, Roland Mainz, Donnie Keathley, Wei Liu, Genji Zhou,

Postdocs:

Sergio Carbajo, Anne-Laure Calendron, Huseyin Cankaya, Emilio Nanni, Fabian Reichert, William Putnam

Research Scientists: Arya Fallahi, Nicolas Matlis, Kyung-Han Hong, Michael Hemmer, Damian Schimpf, Luis Zapata, Oliver Mücke, Giovanni Cirmi, and Noah Chang

Colaborators:

Dwayne Miller (CFEL, MPSD), T. Y. Fan (MIT – Lincoln Laboratory) W. S. Graves (MIT) Petra Fromme Group (ASU), Henry Chapman Group, Ralph Assmann Group (CFEL, DESY)

Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy

And Associated Scientists from Mid-Sweden University, DESY, and MIT

Attosecond diffraction and spectroscopy of biomolecules

All laser driven, attosecond synchronization simpler

Only pico-second lasers at 1J-level necessary -> kHz operation

→ All optical fully coherent X-ray source, imaging and spectroscopy also seeding of large scale FELs

The S-state cycle of water splitting

4 electrons & 4 protons extracted from the manganese cluster in 4 light flashes These coincide with a change of the oxidation states the manganese cluster Elucidate electronic and atomic structure to understand the mechanism

We must outrun electronic processes

Η.

SCIENCE

Outline

- Why THz acceleration?
- Laser driven THz Sources based on optical rectification
- Accelerating Structures
- First results
- Conclusions

THz Acceleration

Increasing operational frequency:

higher breakdown fields:

$$E_{s} = \frac{f^{1/2}}{\tau^{1/4}}$$

[1] Kilpatrick, W. D., Rev. Sci. Inst. 28, 824 (1957).

[2] Loew, G.A., et al., 13th Int. Symp. on Discharges and Electr. Insulation in Vacuum, Paris, France. 1988. [3] S. Tantawi and V. Dolgashev, private Communication.

reduced pulse energy to achieve same electric field in the cavity:

stored energy:

$$E_P \sim \lambda^{-3}$$

reduced pulsed heating:

$$\Delta T \propto \frac{E_p}{A_{SURFACE}} \propto \frac{V_{CAVITY}}{A_{SURFACE}} \propto R \propto \lambda$$

 \rightarrow high repetition rate operation becomes possible!

• **High-gradient accelerators:** reduced size, short bunches and improved electron beam quality!

Indications for Scaling

X-rays are produced from accelerated electrons

Interesting THz range

- 1-10 pC Charge
- 0.1 1 THz range seems to be optimum (0.3 THz ~ 1 mm)

Wavelength Scaling

Potential 300 GHz gun

2 mJ, THz Energy

Laser driven THz Sources via optical rectification

Most efficient method : ~ 1 % energy conversion efficiency³,
~ mJ THz pulse energy^{4,5}

- Intra-pulse difference frequency generation
- THz bandwidth proportional to optical pulse bandwidth
- Must satisfy phase-matching condition

$$\vec{k}(\omega + \Omega) - \vec{k}(\omega) = \vec{k}(\Omega)$$

$$n_g(\omega) = 2, \quad n_p(\Omega) = 5$$

S. W. Huang et al Opt. Lett. 38(5), 796-798 (2013).
C. Vicario, Opt. Lett., 10.1364/OL.99.09999 (2014).
J. A. Fulop et al , Opt. Express 22(17), 20155-20163 (2014).

13

Laser driven THz Sources based on optical rectification

Fig. 3. (Color online) Calculated shape of the tilted pump pulse versus FL pump pulse duration for various crystal temperafront inside the LN crystal. Inset: geometry of the LN crystal.

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, "Generation of sub-mJ terahertz pulses by optical rectification," Opt. Lett. 37, 557-559 (2012)

Experimental Setup

Cascading Effects in Optical Rectification

SCIENCE

S.-H. Huang, et al. Opt. Lett. 38, 796 (2013) 16

Spatio-temporal characterization

Impact of Cascading : 1-D model

- Cascading + GVD due to angular dispersion -> Strongest limitation
- SPM not important

Confirmation with 2-D model

(a) SPM, GVD-AD, material dispersion, absorption

(b) Cascading Effects, GVD-AD, material dispersion, absorption

UΗ

SCIENCE

- Without back action due to cascading
 - long interaction,
 - higher efficiency
- With back action due to cascading,
 - shorter interaction
 - lower efficiency.
- OR using TPF in LN max. conv. ~ 1% for single-cycle pulses

QPM structures for efficient multi-cycle terahertz generation

STATE-OF-THE-ART Yb:YAG PS TECHNOLOGY

Cryogenic technology can scale energy and repetition rate simultaneously & simplify laser architecture

High energy and power laser development

SCIENCE

Cryo-Yb:YLF: enables sub-ps pulses

Photo cathode front-end: optical synthesizer

DES

SCIENCE

Dielectrically Loaded Circular Waveguide

- Traveling wave structure is best for coupling broad-band single cycle pulse
- Phase-velocity matched to electron velocity with thickness of dielectric

Electron Acceleration using THz Waveguides

Electron Acceleration using THz Waveguides

SCIENCE

Electron Acceleration using THz Waveguides

Simultaneous acceleration and compression

Acceleration to 4.5MeV

17% energy spread

THz Acceleration Experiments with μJ – single-cycle THz pulses

THz Pulse Properties

- Single cycle THz pulse (~2 ps) centered at 0.45 THz
- 10 µJ pulse measured ~1 m from source

THz Acceleration Chamber

60 keV DC Gun from Dwayne Miller Group

DC Gun and THz LINAC

DC Gun and THz LINAC

Dielectrically Loaded Horn

 Coupling of THz into waveguides with dielectrically loaded structure that is simple to fabricate

Transmission Measurements

Щ

SCIENCE

Electro-Optic (EO) Sampling

- THz waveguide is highly dispersive over a large bandwidth
- Dispersion in waveguides measured with EO sampling

THz Acceleration Modeling

- Time domain acceleration of a single particle
- Small change in field has big impact due to low particle energy

Electron Beam Parameters

- Electron beam imaged on a microchannel plate (MCP) detector
- Solenoid is optimized to focus electron bunch at MCP
- PARMELA is used to simulate from photo-emission to detection UV Laser = 0.7 µJ, 250 nm, 350 fs

SCIENCE

Energy Spectrometer

- A magnetic dipole is used to steer the electron beam in an energy dependent manner
- Resolution limit set by drift distance and pixel size

SCIENCE

Terahertz-driven Linear Electron Acceleration

- Signal integrated over 3 seconds with 1 kHz repetition rate
- Measured energy spectrum for 59 keV start energy
- Modeled on-axis gradient of 4.9 MeV/m
- Electron bunch $\sigma_z = 45 \,\mu m$

Terahertz-driven Linear Electron Acceleration

Future Work

- Extending THz acceleration to GeV/m and relativistic energies
 - Improvements to IR laser pulse energy (1 J) with cryo-YAG or cryo-YLF multi-pass amplifiers
 - High energy accelerator development underway using single and multi-cycle pulses

Demonstrated cryo-YAG amplifier 160 mJ IR pulse, uncompressed

L. J. Wong, et al., Optics Express 21.8 (2013): 9792-9806.

Modeling THz Acceleration

10 cycle, 20 mJ pulse, 0.74GeV/m

THANK YOU FOR YOUR ATTENTION

European Research Council

erc

Alexander von Humboldt Stiftung/Foundation

Modeled Acceleration vs UV Delay

- Due to propagation in waveguide THz pulse suffers from dispersion
- Acceleration very sensitive to input spectrum

Radial Polarizer w/ Cryo Pulse

EO sampling should be insensitive to radial polarization at 450 GHz

Energy Spectrum vs. Voltage

Tuning voltage with THz On

Key Laser Parameters

- IP beam waist is 3 microns
- Green pulse length is 2 ps
- Target conversion efficiency 50%
- IR pulse energy 100 mJ
- Desired repetition rate for cavity is 5 ns or L_{Tot} ~ 1.5 m
- Damage threshold 0.28 J/cm² for 2 ps pulse

Detailed Parameters

	Cavity Length (m)	1.50
	Focal Length (cm) - f1	34.50
	Focal Length (cm) -f2	3.00
Green	w0 (microns)	3
Green	w1 on Lens (mm)	18.85
Green	w1 on Mirror (mm)	3.28
Green	Peak Surface Intensity (GW/cm^2)	73.9678
Green	Peak Surface Field (GV/m)	0.53
Green	Energy (mJ)	50
Green	Pulse width (ps)	2
Red	w1 (mm)	26.66
Red	Peak Surface Intensity (GW/cm^2)	26.15
Red	Peak Surface Field (GV/m)	0.44
Red	Energy (mJ)	100
Red	Pulse width (ps)	2.83
SiO2	Lens Thickness (mm)	2.8
SHG - LBO	Total Thickness (mm)	3.15
	Surface Safety Factor	1.91
	B-integral (SHG)	2.37
	B-integral (Total)	5.29
	Number of Passes	100
	Loss	1%

THz Generation

- THz generation via optical rectification of IR pulses
- Optical rectification: intra-pulse difference frequency generation

THz Generation Setup

- Yb:KYW regenerative amplifier
 - 1 μm, 1.2 mJ, 700 fs, 1 kHz

 ~1% THz conversion efficiency with pulse front tilting and cryogenic cooling

THz Generation Setup

DES

SCIENCE

Energy Gain vs Voltage

- Energy gain depends on initial electron energy
- Increase in energy decreases phase slippage
- Single particle model with 5 MeV/m gradient

THz Generation Efficiency

- Conversion efficiency of 1.7% in room temperature sLN
- Cascaded IR pulse is associated with high conversion efficiency

SCIENCE

X-ray Lasers

- X-ray FELs provide new opportunities for scientists
- Will accessibility remain in issue?

Coherent emission from LCLS (2009)

European XFEL (2017)

Why are X-ray Sources so Big?

 Size is driven undulator period and need for high energy $\lambda_x \propto \frac{\lambda_u}{2\gamma^2}$ $\lambda_x = 1 \text{ nm}$ $\lambda_u = 3 \text{ cm}$ $E \approx 2 \text{ GeV}$

State-of-the-Art

RF Accelerator

Static Undulator

Research Instruments GmbH

XFEL SC 1.3 GHz

LCLS

Compact X-ray Source Technologies

- High Gradient Accelerators
 - 50 MeV/m

SCIENCE

Electromagnetic Undulator

Graves, W. S., et al. Phys. Rev. Lett. 108.26 (2012): 263904.

X-Ray FELs operating and under construction

European XFEL 2017

THz streaking of FEL - pulses

SCIENCE

Schulz et al. Nat. Communications (2015) 58

THz Acceleration

- Increasing operational frequency: higher breakdown fields, reduced pulse energy ~ λ^{-3} , reduced pulsed heating and average power load
- **High-gradient accelerators:** reduced size, short bunches and improved electron beam quality

Efficient THz Generation

- Single cycle THz pulse (~2 ps) centered at 0.45 THz
- J. Hebling et al. Opt. Express 21(10), 1161-1166 (2002).
- 1mJ \rightarrow 10 µJ pulse measured ~1 m from source (1 2 %)

S.-W. Huang et al., Opt. Lett. 38:(5), 796-798 (2013). S. Carbajo, CLEO US (2015). 60

THz Acceleration

DÈŚY

THz driven FEL like source

茁

SCIENCE

CEP sensitive field emitter array

High energy cryogenic lasers

UН

(1)

SCIENCE

DES

L. Zapata, et al. Opt. Lett. 40, 2610 (2015).

F. Reichert, et al. CLEO-EU (2015); CA-10.2 THU

Ti:sapphire Synthesizer

SCIENCE

Yb-based Synthesizers

Summary

 FELs are combined accelerator and laser facilities with unique challenges to Ultrafast Optics

- Precision timing
- High energy and power ultrafast sources
- Laser driven compact coherent FEL source is possible
 - Modulated electron beams source
 - THz generation and & accelerators
 - Joule class picosecond lasers

Acknowledgement

Students:

Michael Peng, Patrick Callahan, Aram Kalaydzhyan, Giulio Rossi, Shi Hsuan Chia, Yudong Yang, Roland Mainz, Donnie Keathley, Peter Krogen, Koustuban Ravi, Frederike Ahr, Ronny Huang, Greg Stein, Krishna Murari, Hong Ye, Wei Liu, Genji Zhou, Qian Cao

Postdocs:

Ming Xi, Shaobo Fang, Anne-Laure Calendron, Huseyin Cankaya, Sergio Carbajo, Emilio Nanni, Fabian Reichert, William Putnam

Research Scientists: Oliver Mücke, Arya Fallahi, Giovanni Cirmi, Kyung-Han Hong, Michael Hemmer, Damian Schimpf, Guillaume Laurent and Luis Zapata, Noah Chang

Colaborators:

Dwayne Miller (CFEL, MPSD), T. Y. Fan (MIT – Lincoln Laboratory) Giovanni Cirmi and Cristian Manzoni (Politecnico Milano) Eric Monberg, Man Yan, Lars Grüner-Nielsen, John Fini (OFS) Petra Fromme (ASU),

Henry Chapman, Ralph Assmann, Ingmar Hartl, Holger Schlarb (CFEL, DESY) Max Lederer (European XFEL)

THANK YOU FOR YOUR ATTENTION

European Research Council

Acknowledgments

Prof. Franz Kärtner^{1,2} William Graves¹ Prof. David Moncton¹ Kyung-Han Hong¹ Luis Zapata¹ W. Ronny Huang¹ Koustuban Ravi¹ Liang Wong¹ Hua Lin¹ Boris Khaykovich¹ Arya Fallahi² Krishna Murari² Prof. R. J. Dwayne Miller^{3,4} Gustavo Moriena³

Max Planck Research Depa Structural Dynamics

at the University of Hamburg

¹Massachusetts Institute of Technology, Cambridge, USA

²Center for Free Electron Science, DESY, Hamburg, Germany

³University of Toronto, Toronto, Canada

⁴Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany Funding:

AXSIS - Source Characteristics

Parameter	C-ICS 4 keV	C-ICS 12.4 keV	X-ray FEL 9.6 keV	Units
Bunch charge	3	3	150	рС
e-beam energy	20	35	10,000	MeV
Photon number	10 ⁹	10 ⁹	2.10 ¹²	Photons
Pulse length	23	7.5	100,000 (5,000)	as
Peak brightness	6	180	2	10 ²² ph / (s 2% bw mm ² mrad ²)

Spatio-Temporal Pulse Shaping For Low Emittance

Motivation for THz Acceleration

- High-gradient accelerators are attractive due to reduced size and improved electron beam quality
- Increasing operational frequency reduces complications from pulsed heating, breakdown and average power load
- Commercial IR laser can generate a 20 MW THz pulse
- Proof of concept: accelerate 60 keV electrons with THz pulse THz LINAC

ASE-control and gain hold-off

DRAMATIC INCREASE IN

GAIN-HOLD REALIZED

Composite disk with fashioned edges

Standard disk

