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Introduction

B The propagation of a non-laminar, relativistic charged particle
beam in a plasma

drive beams wakes trailing beam

/\/'\ (
\/
wake: phase velocity = drive-beam velocity
B The density and current perturbations of both plasma and

beam excite the plasma wake field (PWF) that are travelling
behind the beam itself

B For sufficiently long beam, the beam experiences the effect of
the wake fields that itself created and it evolves according to a
self-consistently which is described by Vlasov- Poisson-like pair
of equations.



Introduction

Poisson-like equation (PE) relates the beam density with the wake
potential, providing this way an effective collective potential
experienced by the beam itself

We first consider the Lorentz-Maxwell system of equations
governing the spatio-temporal evolution of the ‘beam+plasma’.
Here, the beam acts as a source of both charge and current

In the co-moving frame a sort of electrostatic approximation can
be provided, therefore the L-M system can be reduced to Poisson-
like equation

Consequently, since here we assume that the collective and
nonlinear beam dynamics is governed by the Vlasov equation, we
provide an effective description of the beam+plasma system by
adopting the pair of Vlasov and PE.



Introduction

Nonlinear and collective dynamics
e N

Vlasov equation
N Y,

/ D
Poisson-like

equation
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SCHEME OF THE SELF-CONSISTENCY




Non-relativistic plasma + relativistic beam

® Generalized Poisson-like equation

» plasma: warm (in adiabatic approximation), non-relativistic, ions
are at rest (infinitely massive), magnetized Bo = 5o

» beam: non-laminar, collisionless, relativistic and arbitrarily sharp

Lorentz-Maxwell system of equations
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Non-relativistic plasma + relativistic beam

B |inearize the set of equations around unperterbed state
B transform all the equations to the co-moving frame ¢ = z-fct

B split the variables into the longitudinal and transverse
components
Generalized Poisson-like equation for the wake potential
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where Q = (BA, - ¢1), A, and ¢,being the longitudinal components of
the perturbation of vector and scalar potential respectively.
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Non-relativistic plasma + relativistic beam

Different limiting cases in PWF theory from generalized one
> If a. = a1 =0 (cold plasma),
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Non-relativistic plasma + relativistic beam

m Equation for beam dynamics

af
ot

p = single particle momentum conjugate to r
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® Purely longitudinal self consistent system
» Vlasov-Poisson-like pair of equation for PWF,
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Relativistic plasma and Relativistic beam

B Assumptions: relativistic charged particle beam entering a
relativistic, collision-less, cold, unmagnetized plasma and
producing the PWF excitation therein

® Model: relativistic L-M system of equations

on
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Relativistic plasma and Relativistic beam

B Assume that all the quantities depend on the combined variable
¢=z-[fct

B reduce the L-M system to a set of ordinary differetial equations
describing the system dynamics:

» the transverse motion
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» the longitudinal motion
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® Purely longitudinal equation for electron motion (U, = u, =

Relativistic plasma and Relativistic beam

0)
» expressing momentum in terms of velocity and U. = U
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Fully relativistic equation for PWF in beam-plasma interaction
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Relativistic plasma and Relativistic beam

B expanding wake field around relativistic unperturbed state,

B Zeroth order relativistic PWF equation
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B First order relativistic PWF equation (provided that rigidity
condition, u,, = f, is satisfied)
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Relativistic plasma and Relativistic beam

® Longitudinal relativistic kinetic equation for beam dynamics
» Relativistic Hamiltonian in z-direction
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» small displacements of quantities around the relativistic
zero-th order state and get normalized Hamiltonian as
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EXAMPLES



SELF MODULATION OF ALONG BEAM

B Poisson-like equation:
1.2
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® Vlasov equation: 1070
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N = number of beam particle




SELF MODULATION OF A LONG BEAM
® Virial description:
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B Envelope equation:

V.| = ks (moderately NLC)
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SELF MODULATION OF A LONG BEAM

B Stability analysis in purely local regime, for unmagnetized

plasma (B, =0) |
0 C> 00 (&) >, forany &> & (self-defocusing)
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SELF MODULATION OF ALONG BEAM

B Stability analysis in strongly nonlocal regime (in cylindrical symmetry)
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» In the strongly non local regime the self-interaction of the charged particle beam leads
always to its self modulation which prevents the beam collapse
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SELF MODULATION OF ALONG BEAM
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»Nonlocal regime is valid up to some small region, after that local regime starts.
»In overlapping region fixes the moderately nonlocal regime

» Qualitatively, we can understand that after the critical region, for a fixed value of energy,
above E, it no longer oscillates and start evolve
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Summary

we generalized of PWF theory for warm plasma and
arbitrarily sharp beam

some special cases of the generalized PWF were discussed

we provided the equations for fully relativistic self-consistent
beam-pasma system in both transverse and longitudinal
directions

we discussed the self modulation for a long beam for local
and strongly nonlocal regimes



