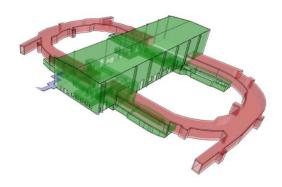
U. DORDA, R. ASSMANN, B. MARCHETTI, J. ZHU & THE LAOLA COLLABORATION
14.09.2015, ELBA

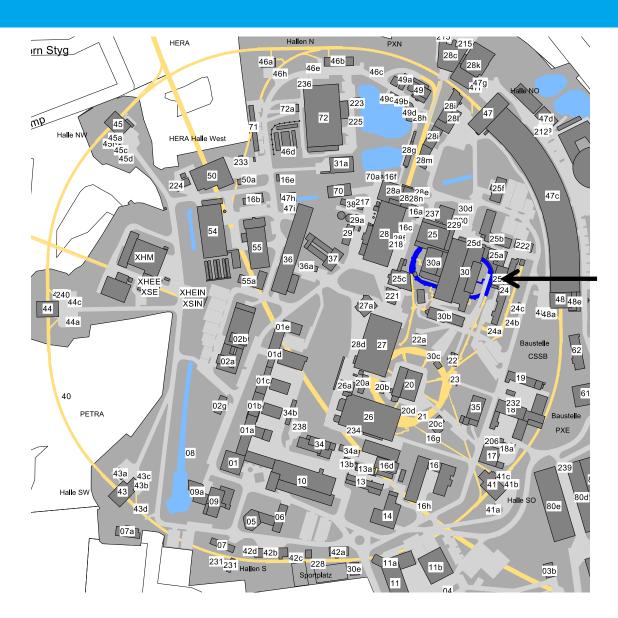
2ND EUROPEAN ADVANCED ACCELERATOR CONCEPTS WORKSHOP

Short Innovative Bunches and Accelerators at DESY

SINBAD


the accelerator R&D facility under construction at DESY

SINRADs IDEA


- Turn the facilities of the old DORIS storage ring plus associated halls into a dedicated multi-purpose accelerator R&D facility with several, independent experiments from ultra-fast science and high gradient accelerator modules.
- Based e.g. on the ongoing LAOLA activities, it is intended to provide a space for long-term dedicated accelerator R&D with multiple experiments using a common infrastructure.
 - e.g. one central high power laser used for several experiments.
- Project goals:
 - Production of ultra-short electron bunches for ultra-fast science.
 - Construction of a plasma accelerator module with usable beam quality for applications.
 - Setup of an attosecond radiation source with advanced technology (AXSIS collaboration).

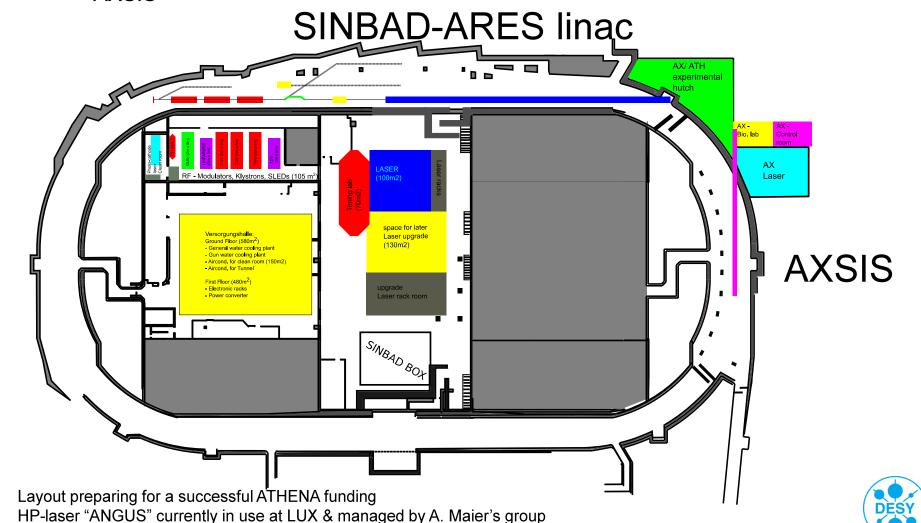
- 290 m long, 5-9m wide RP-shielded tunnel in racetrack shape
 - 2 long straight sections of >70m length
- Central hall (650m²) + additional side rooms & cellars
- 1m thick shielding
- Multiple laser labs directly adjacent

LOCATION ON THE DESY CAMPUS

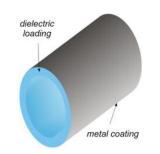
- In the old DORIS facilities
- Next to the central DESY control room
- Beam lines to DESY II

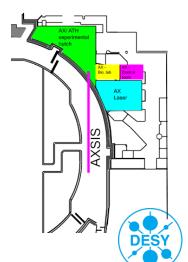
CURRENT CLEAN-UP STATUS

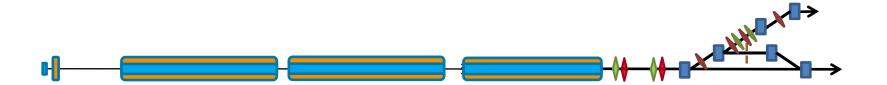
- Removal of old DORIS beam line completed
- Removing of cabling & piping in final stages
- Structural refurbishment (floor, walls,) about to start
- Installation of technical infrastructure planned for spring/summer 2016



OVERALL FORESEEN FACILITY LAYOUT


- SINBAD will initially host 2 experiments
 - SINBAD-ARES linac
 - AXSIS

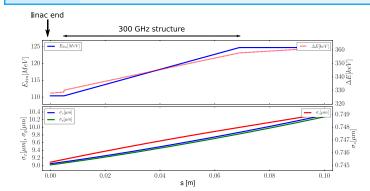



- THz- laser acceleration in dielectric-loaded waveguide & ICS
- Collaboration between F. Kaertner, H. Chapman, R. Assmann & P. Fromme funded by an ERC synergy grant
- Location:
 - Accelerator & ICS in ARC-1
 - "Users" & Laser labs in former Hasylab user areas
- Targeted beam parameters
 - E: 15 / 25 MeV (4 &12keV photons)
 - Q: 0.1pC, kHz rep rate
 - T: aiming for sub-fs bunch length

SINBAD-ARES-LINAC

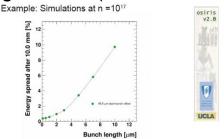
- Layout comprises:
 - REGAE-type RF electron gun (S-band)
 - 2 (upgrade 3) linac-II type S-band RF-structures
 - Magnetic compressor with slit
- Design studies focus on short bunch length & low timing jitter
 - while keeping flexibility for "user" requirements sufficient for radiation production (higher charge in longer bunches)
 - RF-compression, magnetic compression with slit, hybrid compression
- Main design parameters
 - Particle type: electrons
 - Energy: 100MeV (with upgrade option to 250MeV)
 - RMS bunch length: few fs, aiming for sub-1fs
 - Charge: 0.2-20 pC (depending on bunch length)
 - Normalized transverse emittance < 0.5 mm mrad (20pC case)
 - Arrival time jitter (RMS) ≤ 10 fs

RESEARCH PLANS USING THE ULTRA-SHORT BUNCHES


- On the long run, we aim for multiple (3) research beam lines downstream
 - Keeping option to add a beam line into the hall in the far future
- Envisaged topics:
 - Laser plasma wake field acceleration with external injection and demo-FEL
 - Extent depending on approval of the ATHENA proposal
 - Laser driven dielectric structures
 - Laser labs of I. Hartl and F. Kaertner adjacent
 - Imaging beam line (ICS)
 - Comparing conventional beams to LPWA
 - Beam diagnostic test stand
 - Relying/ planning on strong collaborations
 - Current: LAOLA, AXSIS, future test-site for "accelerator on a chip"
 - Hope for: ATHENA, EuCARD-3 TNA

LINAC WORKING POINTS FOR INJECTION INTO ADVANCED

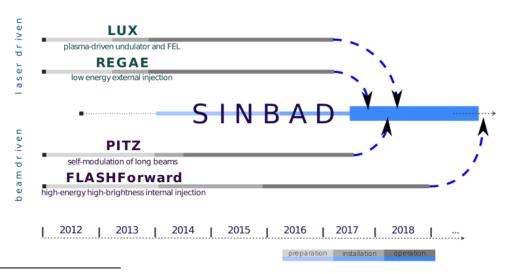
ACCELERATION SCHEMES


	WP3 (vb)	WP2 (vb)	WP (BC)	WP (VB+BC)
Q final [pC]	0.5	0.5	0.7	2.8
Q initial [pC]	0.5	0.5	20	10
tRMS [fs]	2.486	2.321	0.21	0.66
tFWHM [fs]	4.1	2.777	0.22	1.54
E [MeV]	110.9	110.9	100.2	101.6
ΔΕ/Ε	0.3%	0.09%	0.2%	0.2%
xRMS [mm]	0.009	0.152	0.059	0.087
yRMS [mm]	0.009	0.152	0.057	0.090
nεx [μm]	0.054	0.072	0.076	0.22
nεy [μm]	0.054	0.073	0.066	0.21
Peak current [A]*	57	62	950	1200
Local peak current [A]**	85	111	1730	1490
B [A/m ²]***	1.97 * 10 ¹⁶	1.16 * 10 ¹⁶	1.89 * 10 ¹⁷	2.60 * 10 ¹⁶

Simulated injection into a 300GHz dielectric structure

Plasma application

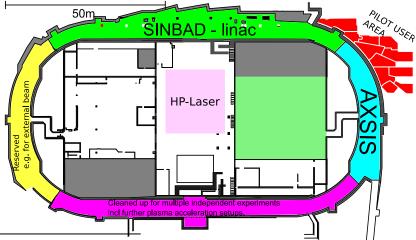
- Velocity bunching (vb) for external injection in to LPWA: matched ß functions range from cm to mm (n~10¹⁴ to n~10¹⁷)
- Bunch length < 5 fs (small final energy spread)



 While for VB, the focusing is done along the linac, in case of a bunch compressor (BC), a focusing optics is needed

PLASMA ACCELERATION AND SINBAD IN THE LAOLA CONTEXT

- Based on the experience of the ongoing LAOLA experiments
- LAOLA = Collaboration UHH and DESY on plasma wake field acceleration currently installing operating:
 - REGAE e.g. B. Zeitler, WG4, Thu 18:20
 - LUX e.g. talk by A. Walker, WG7, Wed 17:10
 - FlashForward e.g. PS 1 by V. Libov
 - PITZ e.g. talk by M. Gross; WG1; Tue 15:50
- Removal of the ANGUS laser to the SINBAD-hall center.
 - Allow for external injection into LPWA
 - In parallel, internal injection LPWA in second long straight section, e.g. LUX-follow-up and ATHENAe for KIT



TIMELINE & OTHER

Timeline

- 2015: Removal of old DORIS and building renovation
- 2016: Installation of technical infrastructure
 - ATHENA decision
- 2017: First beam from RF-gun
- 2018: First beam from linac, start research line operation
- Additional longer term ideas
 - Energy upgrade to 250 MeV and X-band TDS (via CERN collaboration)
 - Internal injection LPWA in second long straight section
 - External beam option (electrons & positrons up to 6 GeV from linac II/ DESY II)

ATHENA - PROPOSAL

- Joint <u>request</u> of 7 Helmholtz centers for Helmholtz strategic investment funds
- "ATHENA provides the infrastructure required for bringing compact and cost-effective plasma accelerators to user readiness. Flagship projects will be set up in Hamburg (electrons) and Dresden (hadrons). Applications for science, medicine and industry will be developed in all centers."
- ATHENAe flagship would be hosted at SINBAD.
- Submission done in June 2015, Decision: Spring 2016

Would allow upgrading with e.g. X-band RF systems, add unndulators, upgrade

synchronization, add undulators, ...

ACKNOWLEDGMENTS

- All DESY groups involved in the facility clean up and planning of future experiments!
- All collaboration partners!, especially LAOLA & AXSIS!
- R. Assmann, B. Marchetti, J. Zhu,

