Optical probing of a laser-driven electron accelerator

Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena
Helmholtz-Institut Jena, Friedrich-Schiller-Universität Jena
The John Adams Institute for Accelerator Science, Imperial College London
Max Planck Institute for the Physics of Complex Systems, Dresden

2nd EAAC, Elba, 17.09.2015
Laser Wake Field Acceleration:
\[\text{→ light intensities} \gtrsim 10^{18} \text{ W/cm}^2 \]

Bubble/ Blowout regime:
\[\text{→ acceleration field} \gtrsim 100 \text{ GV/m} \]

Electron bunch energy:
typically \(E = 200 \text{ MeV} - 1.5 \text{ GeV} \)

Electron bunch duration:
O. Lundh, et al. Nature Physics 7, 219 (2011) \(\tau_p = (4,4) \text{ fs} \)
A. Buck, et al. Nature Physics 7, 543 (2011) \(\tau_p = (5,8\pm 2.1) \text{ fs} \)

Transverse electron bunch size:
M. Schnell, et al. Phys. Rev. Lett. 108, 075001 (2012) \(< (1,6\pm 0,3) \mu m \)
Plateau, et al. Phys. Rev. Lett. 109, 064802 (2012) \textit{ca.} 0.1 \mu m
Probing laser wakefield accelerators

Challenge: Imaging a tiny, fast moving object.

- characteristic length scale: \(\lambda_p = \frac{2\pi c}{\omega_p} \)
- sufficient probe bandwidth
- group velocity of driver: \(\sim c \)

- time integrated
- for slowly evolving plasma features
 - Fourier Domain Holography, ...

- snap shots: \(\tau_{probe} \ll \lambda_p/c \)
- for fast evolving plasma features
 - Interferometry, Shadowgraphy, Polarimetry, ...

• longitudinal

• transversal
Split off part of the compressed main pulse, chirp it and let it co-propagate.
Temporal resolution depends on probe pulse bandwidth: \[\tau_{\text{probe}} \cdot c > \frac{\lambda_p}{2} \]
Transverse probing

pump pulse
imaging lens
probe pulse
super sonic gas jet
electrons xrays,...
Light Wave Synthesizer -20

Sub-10-fs, multi-Terawatt optical parametric chirped pulse amplifier
parameters:

\[E_{\text{laser}} = 65 \text{ mJ}, \quad \tau_{\text{laser}} = 8.5 \text{ fs}, \]

\[f/6 \text{ OAP}, \quad I_{\text{laser}} = 6 \times 10^{18} \text{ W/cm}^2 \]

probe pulse:

\[\tau_{\text{probe}} = 8.5 \text{ fs @ 1}\omega, \quad 2\mu\text{m imaging resolution} \]

A. Buck et al., Nature Physics 7, 543–548 (2011)
LWS 20 shadowgraphy - sub 9fs probe

Shadowgraphy
visualize e-bunch via associated B-fields

Polarimetry
visualize e-bunch via associated B-fields

\[\lambda_p = 2\pi c \sqrt{\frac{m_e \epsilon_0}{n_e e^2}} \]

A. Buck et al., Nature Physics 7, 543–548 (2011)
Frontend of the JETi laser

Power amplifier of the JETi laser

27 fs, 800 mJ, (30 TW peak power), 5×10^{20} W/cm2 peak intensity, 10 Hz
Few cycle microscopy

High resolution imaging system

- **Achromatic Doublet**
 - focal length: 250 mm

- **10x Mitutoyo Plan Apo NIR Infinity-Corrected Objective**
 - focal length: 20 mm
 - long working distance: 30 mm
 - resolving power: 1.5 µm

- **Magnification factor:** 12.5
- **CCD pixel size:** 6.4 µm
Few cycle probe beam - setup

99:1 beamsplitter

800 mJ / 27 fs

compression ≈30 fs with chirped mirrors

neon/ argon filled hollow core fiber

In: 500 µJ
Out: 300 µJ

chirped mirrors for pulse compression

Few cycle probe beam - characterization

Argon @ 0.4 bar
Fourier limit: 4.4 fs

τ = 5.5 fs

© Jens Polz

Few cycle probe beam - optimization

Stereo ATI Phasemeter to measure the asymmetry of the laser pulse

3600 subsequent shots (1h), > 86 % of shots below 4 fs

D. Adolph et al., in preparation
Experimental parameters

JETi 40
35 fs, 720 mJ (24TW) laser pulse
f/13, $d_{(\text{FWHM})}$: 11 µm, $a_0 \approx 1.7$

- Supersonic gas jet (2.7 mm)
- Few cycle, NIR probe beam for shadowgraphy
- Scintillator screen (pointing & divergence)
- Dipole magnet
- Scintillator screen

3 MeV – 1.0 GeV
Energy resolution better 2%

developed in cooperation with group of Axel Bernhard
LWFA under the microscope

Helium, 1.7x10^{19} cm^{-3}

a: plasma wave
b: ionization front
c: Raman side scattering
d: tilted plasma wave
e: Thomson scattering
f: wavebreaking radiation
g: speckle/ noise
h: dust/ dirt
sub 9 fs vs. sub 6 fs probe pulses

A. Buck et al., Nature Physics 7, 543–548 (2011)

Shadowgram is formed mostly in the center part. High gradients & short pulse duration give high contrast.

by courtesy of Evangelos Siminos
(in preparation)
Bubble length - measurement

electron density:

computed shadowgram:

experiment:

Bubble length and plasma period length are directly accessible!
Influence of the plasma density

Results for the second plasma period

\[\lambda_p = 2\pi c \sqrt{\frac{\gamma m_e e}{n_e e^2}} \]

\[\frac{\alpha P}{P_c} > \frac{1}{16} \left[\ln \left(\frac{2n_c}{3n_e} \right) - 1 \right]^3 \]

for our parameters: \(n_e > 1.5 \times 10^{19} \text{ cm}^{-3} \)

Influence of the focal spot

\[\frac{\alpha P}{P_c} > \frac{1}{16} \left[\ln \left(\frac{2n_c}{3n_e} \right) - 1 \right]^3 \]

effective critical Power!

\[\alpha = 0.23 \]

JETi40 focal spot without adaptive optic

Filamentation instability: Helium, \(2 \times 10^{19} \text{ cm}^{-3}\)
Evolution of the plasma wakefield at the critical density for self-injection

![Graph showing the relationship between plasma wavelength and electron density](image-url)
Evolution of the plasma wakefield

Evolution of the plasma wakefield

Bubble expansion starts before injection.

No beamloading but amplification of the pump pulse.

\[\lambda_p^* \approx \lambda_p \left(1 + \frac{a_0^2}{2}\right)^{1/4} \]

3D PIC simulation including the probe

- **electron density & pump intensity**
 - n/n_0
 - $B_2 (10^4 T)$

- **computed shadowgrams**
 - relative intensity modulation

- **experiment**
 - relative intensity modulation

3D PIC simulation (EPOCH), 150x70x70 μm^3 sliding box
2700x525x525 cells

by courtesy of Evangelos Siminos
Bubble expansion – simulation

Bubble expansion starts before injection.

No beamloading but amplification of the pump pulse.

Stable LWFA – Ionization injection

Beam pointing gas jet selfinjection

optimized laser focal spot (adaptive optic)

Gas cell

Beam pointing gas cell 95% He+ 5% N₂

\[n_e = 1 \times 10^{19} \text{ cm}^{-3} \]
Excitation of asymmetric plasma waves

Stimulated side scattering
Transition from linear to nonlinear regime

\[v_g t = 390 \, \mu m \]
\[n_e = 1.65 \times 10^{19} \, cm^{-3} \]

\[v_g t = 520 \, \mu m \]

\[v_g t = 590 \, \mu m \]

Pulse front tilt & mismatch
Pump amplification & wavefront rotation
Blowout
Laser hosing instability

spatial temporal asymmetry

\[n_e = 1.65 \times 10^{19} \text{ cm}^{-3} \]

\[n_e = 2.1 \times 10^{19} \text{ cm}^{-3} \]

Laser hosing instability - evolution

spatial temporal asymmetry
- Important at long interaction length

\[n_e = 2.2 \times 10^{19} \text{ cm}^{-3}, \Delta \tau = +6.6 \text{ ps} \]
- *Few cycle microscopy* is a very powerful diagnostic tool for (laser) plasma interactions

- *Few cycle microscopy* reveals the transformation of the plasma wave during formation, injection and acceleration

- Experimental observation of bubble expansion in the self-injection regime leading to injection of electrons into the wakefield

- Benchmark PIC codes by investigating instabilities

Very interesting times ahead!
Probing future wakefield accelerators

Energy gain

\[\Delta E [GeV] \approx 1.7 \left(\frac{P[TW]}{100} \right)^{1/3} \left(\frac{10^{18}}{n_p [cm^{-3}]} \right)^{2/3} \left(\frac{0.8}{\lambda_0 [\mu m]} \right)^{4/3} \]

For probing techniques, the refractive index defines the sensitivity!

\[n = \sqrt{1 - \frac{\omega_p^2}{\gamma \omega_{probe}^2}} \]

lower plasma density

\[\lambda_p = 750 \text{ nm} \]

lower plasma frequency

JETi 200: \(P = 200 \text{ TW}, \quad \tau_L = 17 \text{ fs} \)

\[\lambda_p = 1.4 \mu m \]

pulse duration: \(\tau_L \leq \lambda_p / 2 \)

\[n_p = 1.6 \times 10^{19} \text{ cm}^{-3} \]

\[n_p = 0.4 \times 10^{19} \text{ cm}^{-3} \]
Few cycle light sources in the MIR

\[n_e = 7 \cdot 10^{18} \text{ cm}^{-3} \]

\[\lambda_{probe} = 750 \text{ nm} \]

Sub 3-cycle laser pulses @ \(\lambda_c = 3.1 \mu m \)

\[E_{\text{pulse}} = 10 \mu J @ 160 \text{ kHz} \]

M. Hemmer et al. Optics Express 21, 28095 (2013)

Super continuum @ \(\lambda_c = 6.5 \mu m \)

\[E_{\text{pulse}} = 100 \text{ nJ} @ 1 \text{ kHz} \]

C.R. Petersen et al. Nat. Photon. 8, 830 (2014)

All optical techniques like shadowgraphy (imaging wakefields), polarimetry (imaging magnetic fields) are feasible for PWFA experiments!
Thanks to all collaborators

E. Siminos

S. Skupin