2nd European Advanced Accelerator Concepts

Test Facility for Advanced Accelerator and Radiation Sources Concepts

13-19 Sep 2015, La Biodola, Isola d'Elba

Introduction

2nd All-Union Workshop on New Methods of Particle Acceleration

10 - 14 Oct 1989, Nor Amberd, Armenia, USSR

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССІ

A.Amatuni, B. Palmer, T. Weiland, T. Katsouleas, J. Simpson, A. Sarantsev, H. Henke, E. Laziev, S. Novokhatski, C. Pellegrini, R. Jameson

Wake Field Accel.
Plasma WFA
Laser-Plasma Accel
Two Beam Accel.
High Freq. Accel.
Inverse FEL

1986-1990 - LUE- 20 MeV Test Facility

Prof. Eduard Laziev - Yerevan Physics Institute

Energy –20 MeV Pulse lenght – 5 psec Bunch charge – 300 pC RF frequency- 3 GHz Emittance – 20 mm-mrad

Not completed

Fig.5 Geometry of the disk–loaded wavequide used in the TBCI calculations (R=5cm, D=2cm, d=0.5cm).

Fig.6 Longitudinal wake potential produced by a train of 5 driving bunches with charge increasing from bunch to bunch. Bunch r.m.s. length σ =8 mm, single bunch transformation ratio k_1 = 1.7 and total transformation ratio 7.4

Experimental program

- Wake Field Accel
- Plasma WF Accel.
- Two-beam Accel.
- THz radiation sources

High Transf. Ratio Multi-bunch WFA

- E. Laziev et al, EPI-1040(3), 1988
- T. Weiland et al , DESY M-88-13 , 1988
- V. Tsakanov, PhD thesis, 1990.
- V. Tsakanov, NIM-A 432, 202, 1999.

2011–2013 - First phase- AREAL

- Small facility + Limited investment
- State-of-the art facility -
- Scientific & Technology asset
- Multiple applications
- Training and Educ. Center
- International cooperation

Exit Scenario

Ultrafast Science and Technology

Ultrashort bunches – sub ps

Small emittance < 0.5 µm

Start –July 2011

Project Development : Exit Scenario

Laboratory for Ultrafast Science and Technology

AREAL – Advanced Research Electron Accelerator Lab

Photocathode

Parameters	Metals	Coated Met.	Semiconduct.	
	(Cu)	(CuBa)	(Cs ₂ Te)	
QE (%)	0.001-0.01	0.01-0.1	0.1-10	
Work funct W (eV)	3.5- 4.5	2-3	1 -2.5	
Damage Thr (mJ/cm ²)	100	40	1-2	
Lifetime	>Year	Months	Weeks	
Response Time (ps)	<0.02	~ 0.5	>1	
Vacuum (nTorr)	1.0	0.1	0.01	
Cost	+	-	-	

Energy – 5-20 MeV Emittance < 0.3 um Energy spread -0.1% Bunch length – 0.1-1ps Bunch charge- 10-200pC

Energy Spread at Gun exit

RF System

Main RF Frequency	(GHz)	2.997925
RF pulse Duration	(μ s)	4
Operating Repetition Rate	(Hz)	1-50
HV Pulse Duration	(μ s)	4
RF Peak power	(MW)	7
Amplitude Stability	(%)	<1.2
Amplitude pulse-to-pulse stability	(%)	<0.5
Phase Stabilization	(°@ 3GHz)	0.1

Amplitude Flatness <1 %

Laser System

t-Pulse Oscillator

Average power	1 W	
Pulse duration	200 fs	
Pulse energy	20 nJ	
Central wavelength	1030 nm	
Spectral bandwidth	5 nm	
Beam quality	TEM ₀₀	
Repetition rate	49.9654 MHz	
tuning range	10 kHz	
tuning accuracy	100 Hz	
Gain material	Yb doped	
Dimensions	60 x 20 cm	

Average power	8 W	
Pulse duration	0.5 – 4 ps	
Pulse Energy	2 mJ	
Central Wavelength	1030 nm	
Spectral bandwidth	5 nm	
Beam quality	TEM ₀₀ (M ² <1.3)	
Repetition Rate	<1kHz	
Gain material	Yb:KGW	
Dimensions	75 x 50 cm	

Yb:KGW -Ytterbium-doped Potassium-Gadolinium Tungstate crystals

Output parameters	Single bunch		Multibunch
Central wavelength	258nm ± 1nm		
Pulse width (FWHM)	0.5 – 4ps (motorized tuning)		0.5ps
Pulse to pulse jitter @49.9654MHz	< 0.5ps rms		
Output pulse repetition rate	<1kHz		49.9654MHz
Pulse energy @258nm	>200µJ		> 10µJ
Number of pulses within 1µs train	1		16
Beam mode	Gaussian, TEM ₀₀ M ² < 1.3		
Beam divergence (FWHM)	< 300µrad		< 1200µrad
Beam diameter	4mm		1mm

s-Pulse Amplifier

Laser Performance

UV – 258 nm Energy – 300 µJ Pulse Length – 0.4 ps Diameter – 4mm Shape – gaussian

Pulse Energy stability – 0.3%

RF Gun

Resonant TM010 mode

DESY type S-Band gun 1.6 cell RF gun Freq - 3 GHz Qual Fact – 15000 Shunt Imp 4.2 MΩ Peak V– 100 MV/m

Vacuum & Cooling

Gun Temp. stabilization- 0.1 degree

Magnets

Design-Simulations- Fabrication -Measurements

Dipole magnet

System B-Field B-Field

Corrector

Beam Diagnostics & Control

2013-2014- First Beam and Commissioning

17:32 - 20 Dec 2013 - First Beam – 36 pC charge

- Charge
- Energy
- Time structure
- Energy spread
- Beam profile (rms)
- Emittance
- Repetition rate

20 - to 236 pC 2.5- 4.5 MeV 0.3 - 8 ps < 1.7% 0.62 mm ~ 0.5 um 1-20 Hz

Sept-2015- High Charge Operation Mode (WFA)

Maintenance and Perfor. upgrade

Cathode

 Position Alignment
 Laser Spot Alignment
 Working surface cleaning Electron Gun
 Resonance tune by cathode position
 Conditioning for High Power RF
 Gun Temper. Stabilization upgrade RF System
 Fine Tune of Power Components
 Timing Adjust. for better performance

HC Operation Mode

Max Energy – 4.8 MeV Bunch charge – 800 pC Energy Spread < 1% Norm emittance ~0.5um

Exper. Program - Multiple applications

New Structures

THz Single Mode Accelerating Structure (ICTP)

M. Ivanyan, Phys. Rev STAB 7, 114402 (2004) M. Ivanyan et al, Phys. Rev STAB 17, 021302 (2014) M. Ivanyan et al, Phys. Rev ST - AB 17, 074701 (2014) 100 200 300 s, متر Wake potentials

µm 100 nm

10 nm

к

10

400

NEG

0.01

0

0.1

Impedance

Poster-170

2015-2016- Experimental Schedule

a=0.1-1cm, Frequency range – 1-5 THz

Microbunching in Single mode structure (Plasma, ICTP)

Advanced Accelerator Concepts - WFA

High Transformer Ratio Multi-Bunch WFA

Two-Beam WFA

Transformer – Storage Acceleration Concept

Highlights – 2015-2017

ALPHA Station – THz SASE Free Electron Laser

Wavelength -10 - 100µm

Study of Waveguide Mode-Enhanced THz SASE FEL

Fig. Comparison of line and discrete spectrums

Fig Discrete energy spectrum for guide radius 0.3cm.

International Cooperation

Technical Advisory

In kind Contributions

PSI-Diagnostics

Welcome to **AREAL** !

