Localised ionisation-induced trapping in a laser wakefield accelerator using a density down-ramp

<u>O Lundh</u>, M Hansson, S Reymond, B Aurand, H Ekerfelt, I Gallardo, C-G Wahlström Department of Physics, Lund Laser Centre, Lund University, Sweden

> T L Audet, F G Desforges, B Cros LPGP, CNRS-Université Paris-Sud, France

S Dobosz Dufrénoy IRAMIS, LldyL, CEA, Saclay, France

X Davoine CEA-DAM-DIF, Bruyères-les-Châtel, France

European Advanced Accelerator Conference, Elba, September 13-19 2015

Vetenskapsrådet

Swedish Foundation for Strategic Research

Density down-ramp injection

- Bubble expands in density down-ramp
 - Background electrons trapped and accelerated
- ✓ Shock-front injection:
 Sharp density gradients
 (~λ_ρ)
- √ Long density gradients (~10*λ*_ρ)

Ionisation-induced trapping

- Background plasma created by front edge of the laser pulse
- Core e- ionized close to laser peak are trapped and accelerated by in bubble
- High charge possible
- Not localised, lead to continuous spectrum

Illustration: A. Pak et al., Phys. Rev. Lett. 104, 025003 (2010)

Outline

- Interferometric characterisation of a gas cell
- Study of ionisation injection in a variable length gas cell
- Ionisation induced trapping in a density gradient

Lund Multi-Terawatt Laser

Gas cell

- Variable length 0 15 mm
- Optical windows for diagnostics and interferometry

Measurement of the gas density

Measurement of the gas density

- Valve opens: Gas flows into the cell
- Equilibrium: Inflow equals outflow (100 µm pinholes)
- Valve closes: Cell is evacuated

Retrieving the density

Schematic illustration

Influence of the backing pressure

- Linear dependence on backing pressure
- ~90% of static reservoir density measured in cell
- 100-200 ms filling time to maximum pressure

Influence of the cell length

- Maximum density is the same for all cell lengths
- Longer filling time for longer cells

Influence of the gas medium

- H_2 , He: ~50 ms filling time
- N₂: ~100 ms filling time

Reproducibility

- 240 mbar N_2 , Length 5 mm
- ±0.55% RMS density fluctuation

Entrance gradients

- Density gradients estimated using computational fluid dynamics
- Plateau density measured using interferometry

Experimental setup

Target parameters

- L = 0.5 4 mm
- H₂ or H₂ + 1%N₂
- P = 100 300 mbar

Laser pulse parameters

- *E* = 600 mJ
- $T_{\rm FWHM} = 37 \, {\rm fs}$
- *D*_{FWHM} = 17 μm
- *I*_{peak} = 4 10¹⁸ W/cm²
- *a*₀ = 1.2

Density dependence

Mixture H2+1%N2

- Threshold $\approx 3 \cdot 10^{18} \text{ cm}^{-3}$
- Broad energy spectrum
- Stable

Pure H2

- Threshold $\approx 1 \cdot 10^{19} \text{ cm}^{-3}$
- Narrow spectral features
- Fluctuations

Density dependence

Mixture H2+1%N2

- Threshold $\approx 3 \cdot 10^{18} \text{ cm}^{-3}$
- Broad energy spectrum
- Stable

Typical beams with $Q \approx 40 \text{ pC}$

Pure H2

- Threshold $\approx 1 \cdot 10^{19} \text{ cm}^{-3}$
- Narrow spectral features
- Fluctuations

- 250 mbar H₂ + 1%N₂
- Peaked features at optimum length
- Energy of peak essentially constant

- 250 mbar H₂ + 1%N₂
- Peaked features at optimum length
- Energy of peak essentially constant
- Wide part of spectrum dominates over peak for longer cells

Reproducible beam characteristics

Reproducible beam characteristics

- Cell length 0.7 mm
- Pressure 250 mbar

UNIVERSITY

Reproducible beam characteristics

18

UNIVERSITY

- Increased injection from N5,6+ in the density ramp
- Longitudinal extent allows phase-space rotation
- Two separate peaks in electron energy spectrum

Summary

- Interferometric characterisation of a variable length gas cell
- Combined ionisation- and density down-ramp injection
- Peaked spectra by localisation and phase-rotation
- Reproducible beam structures

Talk in WG1 Wednesday (tomorrow) by Martin Hansson

Controlled injection using

Two gas jets: Density down-ramp injection Two laser beams: Colliding pulse injection

Thank you for the attention!

Acknowledgments

Swedish Research Council Knut and Alice Wallenberg Foundation Swedish Foundation for Strategic Research Laserlab-Europe/CHARPAC EuCARD2/ANAC2 Swedish National Infrastructure for Computing (SNIC)

