The concept of coupling impedance in the plasma wake field excitation as a new tool for describing the self-consistent interaction of the driving beam with the surrounding plasma

Renato Fedele

Dipartimento di Fisica, Università di Napoli “Federico II” and INFN Sezione di Napoli, Napoli, Italy
This work has been developed within a recent collaboration with the following researchers:

- Tahmina Akhter, Dipartimento di Fisica, Università di Napoli Federico II, Napoli, Italy
- Sergio De Nicola, SPIN-CNR, Napoli, Italy
- Alberto Marocchino, Dipartimento SBAI, Sapienza Università di Roma
- Francesco Massimo, Dipartimento SBAI, Sapienza Università di Roma
- Mauro Migliorati, Dipartimento SBAI, Sapienza Università di Roma
- Luigi Palumbo, Dipartimento SBAI, Sapienza Università di Roma
Introduction

THE COUPLING IMPEDANCE IN CONVENTIONAL ACCELERATORS

- In a conventional particle accelerator, the coupling impedance schematizes the interaction of a (relativistic) charged particle beam with the surrounding medium.

- This interaction involves the wake fields that are produced by each charged particle of the beam and therefore is a macroscopic collective manifestation of the beam in the surroundings.

- A very effective way to describe such an interaction makes use of the concept of both image charges and image currents. They are produced, for instance, on the metallic walls of the vacuum chamber, by the charged particles of the beam. They produce electric and magnetic fields capable, in principle, to affect the particle of the beam itself.
Introduction

THE COUPLING IMPEDANCE IN CONVENTIONAL ACCELERATORS

● The beam particles experience the effects of the fields that the particle themself have produced (*self-interaction*).

● In general, the wake fields produced by a sufficiently short bunch affect the particle of another bunch moving behind.

● Due to the nature of the interaction between the beam and the surroundings, some *reactive* (*capacitive* as well as *inductive*) energy related to the beam space charge and current is involved in the system.

● In addition, the possible resistive carachter of the metallic walls experienced by the image currents, involves some *resistive* (i.e., *ohmic*) energy, as well.
Therefore, in the frequency and wave number domain, the interaction of the beam with the surroundings can be effectively represented by a sequence of elements of an electric transmission line. Each of these elements accounts for an equivalent impedance per unitary length which is constituted by an equivalent capacitance, inductance and resistance per unitary length.

Introduction

THE COUPLING IMPEDANCE IN CONVENTIONAL ACCELERATORS

- Lossless Transmission Line Model

- Lossy Transmission Line Model
In 1959, Sessler went on to study dynamical instabilities. From his explorations, with Carl Nielsen and Keith Symon, of the negative mass instability emerged the first realization that particle beams could have dynamical instabilities due to their space charge. The researchers invoked Landau damping as a cure for these instabilities, and they developed techniques that have been used to study the other kinds of instabilities discovered.[A.M. Sessler, C. E. Nielsen and K. R. Symon. Longitudinal instabilities in intense relativistic beams. In Proceedings of the international conference on high-energy accelerators and instruments. Geneva: CERN, 239–252.]
In subsequent studies with Ernest Courant, Sessler became interested in single bunches rather than a continuous beam, and he realized that wall resistance is only one aspect of the general concept of impedance [L. J. Laslett, V. K. Neil and A.M. Sessler, Transverse resistive instabilities of intense coasting beams in particle accelerators. Rev. Sci. Instrum. 36:436–448; E.D. Courant and A.M. Sessler]—later to be developed with Vittorio Vaccaro [A.M. Sessler and V.G. Vaccaro].

Sessler had a high opinion of Vaccaro, whose ideas had not been so well received at CERN. Nowadays, however, everyone uses their work to calculate, measure, and control impedance in order to limit instabilities.
Introduction

LIST FOR RECOGNIZING THE PARTICIPANTS

1 - Daniele FADINI 14 - Paolo PRATI 26 - Luca FERRUCCI
2 - Federico CASAGRANDE 15 - Fabrizio CASTELLI 27 - Roberto CORSINI
3 - Pierre CARLOS 16 - Lucio ROSSI 28 - Piero PATTER
4 - Paul PAUGERAS 17 - Bruno DVIACCO 29 - Lucia de SALVO SOUZA
5 - Ilario MOSCOLO 18 - Luca SERAFINI 30 - Giovanni Posadinu
6 - Eltjo HASELHOFF 19 - Dario GIOVE 31 - Rodolfo MONTPACIO
7 - Vincenzo VAMILLE 20 - Giovanna CERCHIONI 32 - Brian Mc NEIL
8 - Kwang Je KIM 21 - Vincenzo STAGNO 33 - Claudio PELLEGRINI
9 - Horst HEINRICH 22 - Andrew SESSLER 34 - Manuela MOSCOL
10 - William BARLETTA 23 - Renato FEDELE 35 - Giovanni BELLONO
11 - Nicola PIOVELLA 24 - Paolo MICHELATO 36 - Massimo FERRARIO
12 - Hans Jurgen CINKEL 25 - Ciro MAPP 37 - Paolo PIERINI
13 - Ernst T. SCHARELMAAN
In the self-consistent PWF excitation the beam particles experience the effects of the fields that the particle themself have produced (self-interaction).

Nonlinear and collective dynamics

Vlasov Equation

Poisson-like Equation
Vlasov equation: kinetic equation (in comoving frame) governing the spatiotemporal evolution of the one-particle distribution function $f(r,p,t)$ in the Boltzmann phase space (i.e., μ-space); it provides the kinetic description of the charged-particle beam while interacting with the surrounding plasma.

Poisson-like equation: differential equation which relates (in the comoving frame) the beam density, i.e., $n_b(r,t)$ to the wake potential, i.e., $\Omega(r,t)$; it also provides the relation between $\Omega(r,t)$ and $f(r,p,t)$.

The concept of the coupling impedance in the beam-plasma interaction ruled by the PWF excitation can be introduced after linearizing the Vlasov-Poisson-like system (around an unperturbed state) and taking the Fourier transform of the resulting equations.
EXAMPLES OF VLASOV-POISSON-LIKE PAIR OF EQUATIONS

Example 1 - for simplicity we confine our attention to the *purely longitudinal* beam dynamics in a *collisionless beam-plasma* system.

- **Linearized Vlasov equation** after making the coordinate transformation: \(\xi = z - \beta t, \quad \tau = t \) \((\beta \simeq 1)\)

 \[
 \frac{1}{c} \frac{\partial f_1(\xi, P_{1z}, \tau)}{\partial \tau} + P_{1z} \frac{\partial f_1(\xi, P_{1z}, \tau)}{\partial \xi} + \frac{q}{m_0 \gamma_0 c^2} \frac{\partial \Omega_1}{\partial \xi} \frac{\partial f_0(z, P_{1z}, t)}{\partial P_{1z}} = 0
 \]

- **Linearized Poisson-like equation** after making the coordinate transformation: \(\xi = z - \beta t, \quad \tau = t \) and imposing the *quasi-stationary* conditions \(\frac{\partial}{\partial \tau} = 0 \)

 \[
 \left(\frac{d^2}{d\xi^2} + k_p^2 \right) \Omega_1 = k_p^2 \frac{m_0 c}{e^2 n_0} \frac{I_{b1}}{\beta \pi \sigma^2_{\perp}}
 \]

 \[I_{b1} = q \beta c \pi \sigma^2_{\perp} n_{b1}\]
Longitudinal coupling impedance in PWF interaction

\[
\tilde{f}_1 = - \frac{(q/m_0 \gamma_0 c^2) k \tilde{\Omega}_1 f_0'}{k \mathcal{P} - \frac{\omega}{k}}
\]

\[
(-k^2 + k_p^2) \tilde{\Omega}_1 = k_p^2 \frac{m_0 c}{e^2 n_0} \frac{\tilde{I}_{b1}}{\beta \pi \sigma^2_{\perp}}
\]

\[
\int \tilde{f}_1 d\mathcal{P} = \tilde{n}_{b1} = \tilde{I}_1 / q \beta c \pi \sigma^2_{\perp}
\]
EURISTIC DEFINITION OF THE COUPLING IMPEDANCE

For simplicity we confine our attention to the longitudinal coupling impedance (it can be easily generalized to the transverse coupling impedance)

\[
\frac{Z_L(k, \omega)}{k} = i \frac{\tilde{\Omega}_1(k, \omega)}{\tilde{I}_1(k, \omega)}
\]
Longitudinal coupling impedance and dispersion relation

\[
\frac{Z_L}{k} = -\frac{K_0 k_p^2}{(k^2 - k_p^2)}
\]

\[
1 = i\eta \left(\frac{Z_L}{k} \right) \int \frac{\hat{f}' d\mathcal{P}}{\mathcal{P} - \frac{\omega}{k}}
\]

\[
\hat{f}_0 = f_0/n_{b0}, \quad \eta = (k_p^2 \beta c \sigma^2 q^2 n_{b0})/4e^2 n_0 \gamma_0
\]

\[
K_0 = m_0 c/n_0 e^2 \beta \pi \sigma^2
\]
Longitudinal coupling impedance in PWF interaction

\[Z_L = Z_R + iZ_I \]

\[
Z_I \quad \frac{k}{k} = -\frac{K_0 k_p^2}{(k^2 - k_p^2)}
\]

\[Z_R = 0 \]

\[1 = -\eta \left(\frac{Z_I}{k} \right) \int \frac{\hat{f}' d\mathcal{P}}{\mathcal{P} - \frac{\omega}{k}} \]
EXAMPLES OF VLASOV-POISSON-LIKE PAIR OF EQUATIONS

Example 2 - for simplicity we confine our attention to the purely longitudinal beam dynamics in a *collisional beam-plasma*. We assume that the collision frequency between the beam particles and the plasma electrons are not negligible:

- *collisional Vlasov equation for the beam*
- *collisional Lorentz-Maxwell system*

- **Linearized Vlasov equation:**

\[
\int \tilde{f}_1 \, dw = n_b = -\frac{q}{m_0 \gamma_0 c^2} \tilde{\Omega}_1 \int \frac{f'_0 \, d\mathcal{P}_z}{\mathcal{P}_z - \frac{\omega}{ck} - \frac{i}{ck \tau_c}}
\]

- **Linearized Poisson-like equation**

\[
\left[-k^2 \left(1 + i \frac{b/m_0}{k \beta c} \right) + k_p^2 \right] \tilde{\Omega}_1 = 4\pi q \left(1 + i \frac{b/m_0}{k \beta c} \right) \frac{\tilde{I}_1}{q \beta c \pi \sigma_{\perp}^2}
\]
The presence of the collision frequency in the Landau integral is an important difference with respect to the conventional accelerators.
Longitudinal coupling impedance and dispersion relation

\[V_R + iV_I \equiv \eta \left(\frac{Z_R}{k} + i \frac{Z_I}{k} \right) = - \left[i \int_{PV} \frac{f'_0(p)}{p - \beta_{ph}} + \pi f'_0(\beta_{ph}) \right]^{-1} \]

\[\beta_{ph} = \frac{\omega}{k} \quad \omega = \omega_R + i\omega_I \]

- Weak Landau damping:
 \[\omega_I \propto f'_0\left(\frac{R}{k}\right) \]

- Stability/instability analysis: universal Nyquist-like charts. Curves that are mapping \(Z_R \text{ vs } Z_i \). They are plotted for fixed values of \(\omega_I \). They depend on the initial distribution profile and delimitate the stability regions \((\omega_I = 0) \) as well as the instability ones where \(\omega_I \neq 0 \) (growth rate of the instability)
Stability/Instability charts

arbitrary units (non monochromatic unperturbed distribution)

\[f_0(p) \propto (1 - p^2)^2 \]

\[f_0(p) \propto \delta(p) \]: monochromatic beams. What about them?
More general approach to longitudinal and transverse

- From the linearized Vlasov-Maxwell system (several species of plasma components + beam):

\[
\begin{align*}
 f_{s1} &= \frac{i q_s}{\omega} \frac{(\omega - k \cdot v) \hat{I} + k v}{k \cdot v - \omega} \cdot E_1 \cdot \nabla_p f_{s0} \\
 f_{b1} &= \frac{i q_b}{\omega} \frac{(\omega - k \cdot v) \hat{I} + k v}{k \cdot v - \omega} \cdot E_1 \cdot \nabla_p f_{b0}
\end{align*}
\]

- Assuming formally the microscopic Ohm laws for each plasma component and for the beam

\[
\begin{align*}
 \hat{\sigma}_p(k, \omega) &= \sum \frac{i q_s^2}{\omega} \int v \frac{(\omega - k \cdot v) \hat{I} + k v}{k \cdot v - \omega} \cdot \nabla_p f_{s0} d^3 p \\
 \hat{\sigma}_b(k, \omega) &= \frac{i q_b^2}{\omega} \int v \frac{(\omega - k \cdot v) \hat{I} + k v}{k \cdot v - \omega} \cdot \nabla_p f_{b0} d^3 p
\end{align*}
\]
More general approach to longitudinal and transverse impedance

- Plasma dielectric tensor and beam conductivity tensor

\[\hat{\epsilon}(\mathbf{k}, \omega) = \hat{I} - \sum \frac{\omega_{ps}^2}{\omega^2} \int \frac{p (\omega - \mathbf{k} \cdot \mathbf{v}) \hat{I} + \mathbf{k} \mathbf{v}}{\gamma_s} \frac{1}{\mathbf{k} \cdot \mathbf{v} - \omega} \]

\[\hat{\sigma}_b(\mathbf{k}, \omega) = \frac{iq_b^2}{\omega} \int \frac{(\omega - \mathbf{k} \cdot \mathbf{v}) \hat{I} + \mathbf{k} \mathbf{v}}{\mathbf{k} \cdot \mathbf{v} - \omega} \cdot \nabla_p f_{b0} d^3p \]

\[\hat{\epsilon}_{p\mu\nu} = \epsilon_p^L \frac{k_\mu k_\nu}{k^2} + \epsilon_p^T \frac{1}{2} \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right) \]

\[\hat{\sigma}_{b\mu\nu} = \sigma_b^L \frac{k_\mu k_\nu}{k^2} + \sigma_b^T \frac{1}{2} \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right) \]
\[
(\hat{\epsilon}_{p\alpha\beta}) = \\
\begin{pmatrix}
\epsilon^T & 0 & 0 \\
0 & \epsilon^T & 0 \\
0 & 0 & \epsilon^L_p \\
\end{pmatrix}
\]

\[
(\hat{\sigma}_{b\alpha\beta}) = \\
\begin{pmatrix}
\sigma^T_b & 0 & 0 \\
0 & \sigma^T_b & 0 \\
0 & 0 & \sigma^L_b \\
\end{pmatrix}
\]
The specific longitudinal impedance and the longitudinal beam conductivity

\[\epsilon_p^L = 1 + \sum \frac{\omega_{ps}^2 m_s}{\omega^2} \int \frac{v_\mu k_\mu k_\alpha}{k^2} \frac{\partial \hat{f}_{s0}}{\partial p_\alpha} d^3 p - \sum \frac{\omega_{ps}^2 m_s}{\omega^2} \int \frac{v_\mu k_\mu v_\nu k_\nu k_\alpha}{k^2(k \cdot v - \omega)} \frac{\partial \hat{f}_{s0}}{\partial p_\alpha} d^3 p \]

\[\sigma_b^L = -\frac{i \omega \omega_b^2 m_b}{4\pi} \int \frac{k \cdot v}{k^2} k \cdot \nabla_p \hat{f}_{b0} d^3 p + \frac{i \omega \omega_b^2 m_b}{4\pi} \int \frac{(k \cdot v)^2}{k^2(k \cdot v - \omega)} k \cdot \nabla_p \hat{f}_{b0} d^3 p \]

For \(v = \beta c \hat{z} \)

\[\sigma_b^L = \frac{im_b \beta c \omega_b^2}{4\pi} \left(\frac{1}{k} \right) \int \frac{\hat{f}_{b0}'}{v_z - \frac{\omega}{k}} dp \]

The specific longitudinal impedance

\[z_L = \frac{1}{\sigma_b^L} \]

\[1 = i \frac{m_b \beta c \omega_b^2}{4\pi} \frac{z_L}{k} \int \frac{\hat{f}_{b0}'}{v_z - \frac{\omega}{k}} dp \]

In an analogous way we can introduce the transverse specific impedance.
The dispersion relation for beam + plasma system

\[\mathcal{D}_{\alpha\beta}(k, \omega) E_{1\beta}(k, \omega) = 0 \]

\[\mathcal{D}_{\alpha\beta} = \frac{c^2}{\omega^2} k_\alpha k_\beta - \frac{c^2 k^2}{\omega^2} \delta_{\alpha\beta} + \hat{\epsilon}_p \alpha_\beta + \frac{i4\pi}{\omega} \hat{\sigma}_{b\alpha\beta} \]

More reach dynamics by coupling e.m. radiation and beam

More reach dynamics by introducing the collisional terms
Thank you!