

Ion acceleration by intense few-cycle laser pulses interacting with nanodroplets L. Di Lucchio ¹, A.A. Andreev², P. Gibbon³

¹ now at DESY Hamburg, ²MBI Berlin, ³Forschungzentrum Jülich GmbH

Laser ion acceleration: the MeV regime

- MeV protons from gold foils with PW-class laser (Wilks et al., Snavely et al., Clarks et al., 2001)
- Experiments at MBI Berlin with 20 μm droplets and 35 fs laser pulses

(S.Ter-Avetisyan et al., 2004)

mass-limited targets

(Henig et al., 2009)

radiation pressure acceleration

(Robinson et al., 2008)

- light sail, Break-Out Afterburner (BOA) (Qiao et al., 2010)
- proton energies up to 50 MeV and more than 60 MeV

(Y.Fukuda,I.Pomerantz, 2013)

proton energies up to 80 MeV with a 30 fs PW CP laser (T.M.Jeong, 2015)

Our investigation (*L. Di Lucchio, A.A. Andreev, P.Gibbon, Phys. Plasmas 22, 053114, 2015*):

- Single spherical nanotargets, $n = 100n_c(n_c = 1.8 \times 10^{21} cm^{-3})$
- **droplet size** = $100nm \div 1\mu m$
- focus size = 1 micron
- 5 fs pulse, $I = 1 \times 10^{19} \div 1 \times 10^{21}$ W/cm², compared with 40 fs pulse
- Focus on small droplet case (with respect to λ = 800 nm)

Simulation details:

- EPOCH particle-in-cell code
- 34×10^6 particles, $4 \div 20$ micron transverse box side, up to 4600×4600 cells
- $\bullet~\approx 80 \div 800$ processors on Juropa, $128 \div 1024$ processors on Juqueen
- final simulation time : 250 fs after the start of the interaction with the laser (up to 24 CPUh)

typical 3D simulation : maximum 8x12x12 micron size box, up to 600³ cells, duration=20fs (L. Di Lucchio, P. Gibbon, PRSTAB 18, 023402, 02/ 2015)

Energy density for a 100nm and a 1 micron droplet

L. Di Lucchio, A.A.Andreev, P.Gibbon

Hot electron temperature vs. ponderomotive formula

Member of the Helmholtz-Association

Slide 6

Coulomb explosion

Condition for electrons expulsion (Sakabe et al., 2004)

$$a > \left(\frac{8\pi Z e^2 n}{3mc^2}\right)^{1/2} \equiv 34 \left(\frac{Z n}{5 \times 10^{22} cm^{-3}}\right)^{1/2}$$
 (1)

- Explosion time (J.Zweiback, 2002) $\tau_{Coul} \approx 0.8 \sqrt{\frac{4\pi\epsilon_0 m_p}{n_p e^2}}$ Thermal expansion
- ponderomotive energy $\epsilon_h \approx m_e c^2 (\gamma_L 1), \gamma_L = \sqrt{(1 + a_0^2)}$
- hydrodynamical equations with cylindrical symmetry

$$\epsilon_{im} \approx Z \epsilon_{eh} ln^2 (c_s t_{ef}) / r_{dh}) + \sqrt{(((c_s t_{ef}) / r_{dh}))^2 + 1)}$$
(2)

$$r_{dh} \approx \left(\epsilon_{eh}/4\pi e^2 n_{eh}^{1/2}\right), t_{ef} \approx t_L$$
 (3)

L. Di Lucchio, A.A.Andreev, P.Gibbon

A possible fit for the intermediate regime: Murakami and Basko, Phys. of Plasmas 13, 012105 (2006) (I)

characteristic dimensionless parameter

$$\Lambda = \frac{R}{\lambda_D} = R_0 \left(\frac{4\pi e^2 n_{e0}}{T_e 0}\right)^{1/2} \tag{4}$$

• maximum ion energy for $\Lambda >> 1$ and $Zm_e/m_i << 1$

$$E_{i,max} = \epsilon_{i0}\xi_f^2, \xi_f^2 = W(0.5\Lambda^2)$$
 (5)

bulk ion energy (spherical case)

$$\epsilon_{i0} = 2ZT \tag{6}$$

A possible fit for the intermediate regime: Murakami and Basko, Phys. of Plasmas 13, 012105 (2006) (II)

Slide 9

Ion energy spectrum for a 100 nm droplet, t=200 fs

 $\tau_L = 5 fs$

a) I=10¹⁸ W/cm²

b) I=1019 W/cm2

c) I=10²⁰ W/cm²

d) I=10²¹ W/cm²

Slide 10

Shock formation (100 nm droplet, 40 fs pulse)

5 fs vs 40 fs laser pulse (t=200 fs)

 τ_L = 5fs, $E_{max} \sim I^{2/3}$ τ_L = 40fs, $E_{max} \sim I^{1/2}$

L. Di Lucchio, A.A.Andreev, P.Gibbon

Conclusions

- Angular emission of electron bunches at relativistic intensities deviates from Mie prediction following an intensity dependant behaviour as described in *L. Di Lucchio*, *P. Gibbon*, *PRSTAB* 18, 023402, 02/ 2015
- As soon as the bunches leave the droplet, an electron cloud is formed around the ion core
- Ion expansion follows an intermediate regime between hydrodynamical expansion and Coulomb explosion
- maximum ion energies achievable with a 2-cycle laser pulse behave $\sim {\it I}^{2/3}$
- Maximum attainable ion energies are of the order of a few MeV (*L. Di Lucchio, A.A. Andreev, P.Gibbon, Phys. Plasmas 22, 053114, 2015*)