Injection, Acceleration and Collimation of **Electrons in Laser-Plasma Accelerators**

C.Thaury^I, E. Guillaume^I, A. Doepp, R. Lehe^I K.Ta Phuoc¹, A. Lifschitz¹, L. Veisz², S.W. Chou², M. Hansson³, O. Lundh³, V. Malka^{1,4}

¹LOA, Laboratoire d'Optique Appliquée, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, France ²MPQ, Garching, Germany ³Lund Laser Center, Lund University, Lund, Sweden erc ⁴Weizmann Institute of Science, Rehovot, Israel

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

I. Injection in a shock front w/wo ionization assistance

II. Electron beam rephasing

III. Laser plasma lens

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

ENSTA

I. Injection in a shock front w/wo ionization assistance

II. Electron beam rephasing

III. Laser plasma lens

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

ENSTA

Injection in a shock front : principle

Experimental Set-up and Results

Experimental Set-up and Results

Tunable energy from 75 to 275 MeV $\Delta E=20 \text{ MeV} (10 \text{ MeV} \text{ for best shots})$

Charge ~10 to 15 pC

UMR 7

POLYTECHNIQUE

ENSTA

📕 2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

oa

Principle of ionization injection

Properties

- Possibly high charge (>100 pC)
- Low transverse emittance
- Stable
- Large energy spread

Electrons ionized when the laser crosses the shock front spend more time in the acceleraing eld, they are therefore more likely to be be trapped. They can thus be injected below the threshold for classical ionization injection, leading to localized trapping and low energy spread

z (mm) 2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

Experimental Results : Pure helium vs gas mixture (1% N2)

ENSTA

50 consecutive, dispersion-corrected spectrum

http://loa.ensta.fr/

50 consecutive, dispersion-corrected spectrum

http://loa.ensta.fr/

Experimental Results : Charge and Energy Tunability

http://loa.ensta.fr/

UMR 7

I. Injection in a shock front w/wo ionization assistance

II. Electron beam rephasing

III. Laser plasma lens

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

ENSTA

longitudinal field

ne

loa

attainable energy

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

 $^{Z} \rightarrow$

http://loa.ensta.fr/

UMR 7

ENSTA

ÉCOLE POLYTECHNIQUE

Experimental set-up

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

UMR 7

ENSTA ParisTech

Density profil measurements

ENSTA ParisTech

Rephasing AND Energy Boost: exp./PIC CalderCirc Sim.

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

loa

UMR 7 🌗

ÉCOLE POLYTECHNIQUE

ENSTA

I. Injection in a shock front w/wo ionization assistance

II. Electron beam rephasing

III. Laser plasma lens

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

ENSTA

Principle of Laser Plasma Lens

Experimental setup

Acceleration stage

Laser beam 0.9 J, 28 fs, 12 microns FWHM

Focused with a I m OAP at the entrance of a 3 mm gas jet $n_1 = 9.2 \times 10^{18} \text{ cm}^{-3}$

Focusing stage

I mm nozzle with variable n_2 Variable L_d

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)

Demonstration of beam focusing

ENSTA

Influence of the lens density

ENSTA

ENSTA

OC

UMR 7 🇳

POLYTECHNIQUE

ENSTA

Conclusion

Shock assisted ionization injection

- More stable than shock front injection
- Much smaller energy spread than • ionization injection

Electron beam rephasing

Simple setup to increase the beam energy by 50%

Laser plasma lens

- Divergence reduced by 2,6
- No emittance growth for drift length <10 cm (and $\Delta E/E < 2\%$)

POLYTECHNIQUE

OO

Acknowledgements

Sebastien Corde, Remi Lehe, Kim Ta Phuoc, Cédric Thaury, Agustin Lifschitz, Igor Andriyash, Olle Lundh, Jérôme Faure, Antoine Rousse, Stephane Sebban

Laboratoire d'Optique Appliquée, ENSTA ParisTech – Ecole Polytechnique CNRS, Palaiseau, France

PhD and post-doctoral positions at LOA Permanent position for Laser Engineer, Technician PhD and Post-doc at WIS

OLYTECHNIQUE

UMR

ERC/X-five, Charpac/Laserlab³ & Anac²/Eucard²

2nd European Advanced Accelerator Concepts Workshop, Elba, Italy, September 14-19 (2015)