Danilo Domenici

IL TRACCIATORE INTERNO DI KLOE-2

LNF Test Labs 2014

Il rivelatore KLOE

La Camera a Deriva

I nuovi rivelatori di KLOE-2

GEM: Gas Electron Multiplier

Applicando una tensione tra le facce (400 V) si crea un campo elettrico nei fori (100 kV/cm) che induce una moltiplicazione degli elettroni di ionizzazione

Un foglio sottile (50 μm) di Kapton con le facce ricoperte di Rame viene perforato con una matrice di micro-fori (diametro 70 μm) usando tecniche litografiche

LNF Test Labs 2014

GEM: Gas Electron Multiplier

Un rivelatore a tripla-GEM è costituito da Catodo, 3 GEM in cascata e l'Anodo di readout in un volume attivo di gas (es. Ar/CO₂) Guadagno tipico 10⁴ Per 30 e- primari prodotti da una MIP si ottiene un segnale di 50 fC

GEM applications in HEP: present

COMPASS 2001 (first use of GEM in large HEP experiment) 22 31x31 cm² triple-GEMs analog XY strips readout with APV25

LHCb 2006 24 20x24 cm² triple-GEMs digital pad readout with CARIOCA-GEM

TOTEM 2006 40 ø15 cm triple-GEMs digital rφ strips readout with VFAT 4 Cylindrical triple-GEMs (ø 13 ÷ 20 cm) digital XV strips readout with GASTONE

GEM applications in HEP: LHC upgrades

CMS Muon System upgrade 2 demonstrators will be installed by end 2016 Full GE1/1 station instrumented in LS2 (if approved)

ALICE TPC upgrade

replace MWPC with MPGD (GEM or MM to be decided)

ATLAS Muon System upgrade

1280 m² of MicroMega will be installed in LS2 digital (and analog in future) redout with VMM

Disegno del foglio GEM di KLOE

- Prodotto al laboratorio CERN-TE-MPE-EM
- Il lato top è diviso in 40 settori
- Connessioni HV raggruppate in 4 codine ~

Test di qualità dei fogli

- Box in plexiglass a N₂ per ridurre RH sotto il 10%
- Ogni settore deve avere currente < 1nA @ 600V
- Rate di scarica misurato in un periodo di 1h

Final yield: 76% (12 bad foils over 50)

GEM al microscopio

0.0

Realizzazione di una GEM cilindrica

Epoxy glue (Araldite 2011) is distributed by hand on a 2 mm wide line

3 GEM foils are spliced together with a 3 mm overlap and closed in a vacuum bag (0.9 bar)

Realizzazione di una GEM cilindrica

GEM is protected with a Mylar sheet and wrapped on the cylindrical mold

Transpirant tissue (PeelPly from RiBa) is placed around to distribute vacuum

Vacuum bag envelope

Final cylindrical GEM with internal and external rings

Stampi clindrici e anelli di supporto

Aluminum/Teflon molds from ALGRA

Realizzazione del Catodo cilindrico

Inner layer is glues on the mold

Cathode is rolled on the mold and glued in a vacuum bag

Nomex honeycomb is glued on the cathode foil

D. Domenici

Anodo di readout

Readout plane is realized at CERN TE-MPE-EM It is a kapton/copper multilayer flexible circuit Provides 2-dimensional readout with XV strips on the same plane

- X are realized as longitudinal strips
- V are realized by connection of pad through conductive holes and a common backplane
- Pitch is 650 µm for both

X pitch 650 μ m \rightarrow X res 190 μ m

V pitch 650 μ m \rightarrow Y res 350 μ m

Realizzazione del Catodo cilindrico

Incollaggio planare sotto vuoto

Foglio finale lungo ~ 1 m

Avvolgimento sullo stampo cilindrico

Incollaggio finale sotto vuoto

LNF Test Labs 2014

D. Domenici

Laminazione del readout in CF

- The readout is shielded with a very ligth Carbon fiber composite structure realized by RiBa Composites, Faenza, IT
- The shield is composed by a sandwich of two 90 µm thick carbon foils prepreg with epoxy spaced by a 5 mm thick Nomex honeycomb

Assemblaggio di una tripla-GEM

vertical movement precision: $100\mu m/1.5m$

A Vertical Insertion Machine has been built to assembly the 5 electrodes of a Cylindrical-GEM

3 glued overlap zones

LNF Test Labs 2014

Assemblaggio di una tripla-GEM

The GEM is fixed at the bottom of the insertion machine with its mold. Redout is fixed to the top LNF Test Labs 2014 Both electrodes are axially aligned with precision of 0.1mm/1.5m Readout is moved down around the GEM. Eventually the mold is extracted. Procedure is repeated for all electrodes

Griglia spaziatrice in PEEK

- To avoid possible relaxation of the gaps due e.g. to thermal expansion of the foils, we fix a spacing grid on the GEMs (only for Layers 3 and 4)
- It is realized by assembling 8 rings and 12 rods of 300 μ m thick PEEK

Dettagli dell'assemblaggio

F Test Labs 2014

Cylindrical-GEM Inner Tracker

4 cylindrical-GEM detectors

IT FEE: Gastone Chip

Technology	0.35 CMOS - no radhard
Sensitivity (pF)	20 mV/fC
Z _{IN}	400 Ω (low frequency)
C _{DET}	1 – 50 pF
Peaking time	90 – 200 ns (1-50 pF)
Noise (erms)	800 e ⁻ + 40 e ⁻ /pF
Channels/chip	64
Readout	LVDS/Serial
Power consum.	≈ 0.6 mA/ch

128 channels GASTONE Board

- Mixed analog-digital circuit
- Low input equivalent noise, low power consumption and high integrated chip
- 4 blocks:
 - 1. charge sensitive preamplifier
 - 2. shaper
 - 3. leading-edge discriminator
 - 4. monostable

Il tracciatore assemblato

Montaggio sulla Beam-pipe

LNF Test Labs 2014

La nuova IR di DAFNE

Cablaggio dell'IT

Each IT side has:

- 90 readout cables
- 69 HV cables
- 36 gas tubes
- 8 cooling tubes
- 6 temp. probes cables

Detail of connectors zone

IT cabled and shielded

Inserimento in KLOE

Inserimento in KLOE

Un raggio cosmico in KLOE

Tracciamento in KLOE-2

$$\begin{array}{c} e^+e^- \rightarrow \Phi \rightarrow K_L K_S \\ K_L \rightarrow \pi^+\pi^- \\ K_S \rightarrow \pi^+\pi^- \end{array}$$

Obiettivi di Fisica

Test della simmetria CPT

 $\begin{array}{c} \mathrm{e^+e^-} \rightarrow \Phi \rightarrow \mathrm{K_L} \ \mathrm{K_S} \\ \mathrm{K_L} \rightarrow \pi^+ \pi^- \\ \mathrm{K_S} \rightarrow \pi^+ \pi^- \end{array}$

4 tracce cariche provenienti dall'IP

Ricerca di Materia Oscura

 $e^+e^- \rightarrow \Phi \rightarrow \eta U$ $\eta \rightarrow \pi^+ \pi^- \pi^0$ $U \rightarrow e^+e^-$

4 tracce cariche provenienti dall'IP

