

Lunar Laser Ranging test of General Relativity

Manuele Martini

Laboratori Nazionali di Frascati (LNF) dell'INFN, Frascati (Rome), Italy

For the SCF_Lab Team

http://www.lnf.infn.it/esperimenti/etrusco

Outline

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

- Introduction
- Test of General Relativity
- 1st vs 2nd Generation of LLR
- Software package
- Data analysis

Eddington's 1919 observations of star lines of sight during a solar eclipse confirmed the doubling of the deflection angles predicted by GR

Following these beginnings, GR has been verified at higher accuracy.

Tests of General Relativity

- Measurement of relativistic geodetic precession of lunar orbit, a true three-body effect (3 m \pm 1.9 cm)/orbit
- Violation of Weak and Strong Equivalence Principle (WEP/SEP)
- Through SEP: Parametrized Post-Newtonian (PPN) parameter β, measures the non-linearity of gravity
- Time variation of universal gravitational constant G
- Tests of inverse square law (1/r²)

Laboratori Nazionali

LLR tests of General Relativity

INFN Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali di Frascati

* J. G. Williams, S. G. Turyshev, and D. H. Boggs, PRL 93, 261101 (2004)

Science measurement / Precision test of violation of General Relativity	Time scale	Apollo/Lunokhod few cm accuracv*	Single Reflectors	
Parameterized Post-Newtonian (PPN) β	Few years	β-1 <1.1 × 10 ⁻⁴	10-5	10-6
Weak Equivalence Principle (WEP)	Few years	$ \Delta a/a < 1.4 \times 10^{-13}$	10-14	10-15
Strong Equivalence Principle (SEP)	Few years	$ \eta < 4.4 \times 10^{-4}$	3×10^{-5}	3×10^{-6}
Time Variation of the Gravitational Constant	~5 years	$ \dot{G}/G < 9 \times 10^{-13} yr^{-1}$	5×10^{-14}	5×10^{-15}
Inverse Square Law (ISL)	~10 years	$ \alpha < 3 \times 10^{-11}$	10-12	10-13
Geodetic Precession		$ k_{gp} < 6.4 \times 10^{-3}$	6.4×10	65.4×10^{-1}

Corner Cube Retroreflector

IStituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

CCRs Arrays on the Moon

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Relative sizes and separation of the Earth–Moon. An LLR pulse takes 1.255 sec for the mean orbital distance.

Locations of 1st Gen. Lunar Retroreflector Arrays Retroreflectors deployed by Apollo 11, 14, 15

CCRs Arrays on the Moon

CCRs Arrays on the Moon

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

1st Generation LLR

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Librations

Effect of multi-CCR array orientation due to lunar librations

stituto Nazionale li Fisica Nucleare

Laboratori Nazionali di Frascati

LLRRA21/MoonLIGHT

LLRRA21/MoonLIGHT

MoonLIGHT: distributed large (10 cm) CCRs Robotic deployment (rover and/or lander)

> Background image courtesy of Lockheed Martin. Rover/lander image courtesy of NASA

INFN

33

Laboratori Nazionali di Frascati

Istituto Nazionale di Fisica Nucleare

LLRRA21/MoonLIGHT

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Threaded hole to deploy P/L on lander, rover, orbiter (or drill bore stem, like used by Apollo astronauts)

Manuele Martini

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Why do we need precise planetary positions?

Two broad requirement categories:

- Defense
- Astronomical need for accurate planetary positions

Besides the intrinsic interest of astronomers in planetary, asteroidal, and cometary positions, knowledge of these positions over time - called an *ephemeris* - fundamentally affects many areas of solar system and even stellar astronomy:

Software

- To the general public, perhaps the most apparent astronomical need for precise planetary positions is in spacecraft navigation.
- Solar system celestial mechanics depends greatly on accurate positions. Theories of planetary and satellite motions live or die according to how well their predictions agree with observational knowledge of positions. These theories are the means by which we develop our most fundamental understanding of the many complicated dynamical processes and interactions in the solar system.
- Another area where accurate knowledge of planetary positions is crucial is stellar occultations.
- General Relativity

Dependencies

Observations can be interpreted only in the context of our understanding (theoretical models) of the solar system and its dynamics.

Observations can then be used to correct and update our theoretical models.

Combination of planetary system model plus stellar position catalogs, gives rise to a multitude of practical applications

Istituto Nazionale

Reference Frame

Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali di Frascati

Generating Predictions

INFN

Geodetic Precession

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

The term geodetic effect has two slightly different meanings as the moving body may be spinning or non-spinning. Non-spinning bodies move in geodesics, whereas spinning bodies move in slightly different orbits.

The difference between de Sitter precession and Lense-Thirring precession is that the de Sitter effect is due simply to the presence of a central mass, whereas Lense-Thirring precession is due to the rotation of the central mass.

The total precession is calculated by combining the de Sitter precession with the Lense-Thirring precession.

Geodetic Precession

INFN Istituto Nazionale di Fisica Nucleare

Geodetic Precession

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

The GR test of the geodetic precession, evaluated with LLR data and expressed as a relative deviation from the value expected in GR, is:

 $K_{GP} = -0.0019 \pm 0.0064$

Planetary Ephemeris Program

In order to analyze LLR data we used the PEP software, developed by the CfA, by I. Shapiro et al. starting from 1970s.

The model parameter estimates are refined by minimizing the residual differences, in a weighted least-squares sense, between observations (O) and model predictions (C, stands for "Computation"), O-C.

"Observed" is round-trip time of flight. "Computed" is modeled by the PEP software.

APOLLO Normal Point Data

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascat

512008 33012395000000026170710379889370610207 317312B 72439 -5134 5320A 250A

The fields are:

field	width	represents	this example	notes
51	2	?	51	
2008	4	year	2008	time is UTC launch time
3	2	Month	March	
30	2	Day	30 th	
12	2	Hour	12 h	
39	2	Monute	39 m	
50000000	9	10 ⁻⁷ seconds	50.000000 s	
26170710379889	14	round trip time, 10 ⁻¹³ seconds	2.6170710379889 s	measured round trip
3	1	reflector number	Apollo 15 (#3)	0=A11; 1=L1; 2=A14; 3=A15; 4=L2
70610	5	station ID	Apache Point	
207	3	# photons in NP	207 photons	saturates at 999
317	6	uncert in 0.1 ps	31.7 ps	
312	3	10×SNR	31.2	saturates at 99.9
В	1	data quality grade	В	A, B, C, D
72439	6	pressure, 0.01 mbar	724.39 mbar	
-51	4	temperature, 0.1°C	-5.1°C	
34	2	% relative humidity	34%	
5320	5	wavelength, angstroms	5320 angstrom	
A	1	?	Α	
250	4	NP duration, sec	250 sec	
A	1	?	Α	

A normal point contains several information e.g. date of observation, atmospheric conditions, as well as time of flight, data quality and CCR arrays

We convert this in "PEP formalism" with an internal subroutine

Planetary Ephemeris Program

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Two different way to proceed:

•"old stations" (McDonald, Grasse, MLR2)

•Apache Point station

Manuele Martini

O-C residual analysis with PEP

JD is the interval of time in days and fractions of a day since January 1, 4713 BC Greenwich noon.

Istituto Nazionale di Fisica Nucleare

Laboratori Nazionali di Frascati

O-C residual analysis with PEP

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

²COBS 33 - 7/ 8/10 Overall plot MLR2 ,MLR2 : 10 MOON AP15 ∼]

McDonald station on Apollo 15 array

O-C residual analysis with PEP

 $\underline{\mathbf{K}_{GP}}$ is the relative deviation from the value of geodetic precession expected in GR

All together old stations:

$$K_{GP} = (9 \pm 9) \times 10^{-3}$$

Apache Point station:

$$K_{GP} = (-9.6 \pm 9.6) \times 10^{-3}$$

In this analysis $\beta = \gamma = 1$, dG/dt=0. Nominal errors returned by the fit are significantly smaller than the above estimated values of K_{GP}.

Laboratori Nazionali di Frascat

Determination of K_{GP}

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Parameter	GR initial value	Final value
K_{GP} CERGA	0	-0.0162
Parameter	GR initial value	Final value
K_{GP} MAUI	0	0.0060
Parameter	GR initial value	Final value
K_{GP} MLR2	0	0.0095
Parameter	GR initial value	Final value
K_{GP} TEXL	0	-0.0441

Determination of K_{GP}

This preliminary measurement must be compared with the best result published by JPL obtained using a completely different software package

$$K_{GP} = (-1.9 \pm 6.4) \times 10^{-3}$$

On the contrary, after the original 2% K_{GP} measurement by CfA in 1988, the use of PEP for LLR has been resumed only since a few years, and it is still undergoing the necessary modernization and optimization.

<u>Goal</u>: accuracy on K_{GP} of few ‰ with current LLR data ≥ x10 improvement possible only with MoonLIGHTs <u>PEP simulation</u> of physics reach of MoonLIGHTs at lunar poles/limbs/equator and on lander/rover/regolith/drill

Laboratori Nazionali di Frascat

Dummy observations

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascat

PEP can make simulated "dummy" observations.

We are trying to simulate new arrays on lunar surface.

We are trying to simulate arrays at the pole of the Moon and we want to see how the PPN parameters change.

\$ DLTREI) ca	ards	s based	on: llromc	.pre	ec.o	out				
1 10 TI	EXL	MD	59 TEXL	AP11 1.		1.	1E-12 3	4.317	780000000D+14	-5	10
2440469	10	7	15.7500	2440469	10	7	15.7500	8.6E-07	1		
2440573	1	52	12.8000	2440573	1	52	12.8000	8.7E-07	1		
2440662	4	56	46.0729	2440662	4	56	46.0729	2.3E-09	1		
2440692	2	54	14.6649	2440692	2	54	14.6649	2.4E-09	1		
2440693	3	27	36.7982	2440693	3	27	36.7982	2.4E-09	1		
2440719	1	11	53.2295	5 2440719	1	11	53.2295	2.4E-09	1		
2440761	11	16	13.1768	3 2440761	11	16	13.1768	2.3E-09	1		
2440788	5	50	7.2009	2440788	5	50	7.2009	2.4E-09	1		
2440807	2	3	52.5717	2440807	2	3	52.5717	2.4E-09	1		
2440818	8	51	6.6667	2440818	8	51	6.6667	2.4E-09	1		
2440818	12	2	32.0001	2440818	12	2	32.0001	2.4E-09	1		
2440866	1	2	54.8573	3 2440866	1	2	54.8573	2.4E-09	1		
2440867	1	25	16.8002	2440867	1	25	16.8002	2.4E-09	1		
2440867	23	32	18.3002	2440867	23	32	18.3002	2.4E-09	1		
2440868	1	28	43.2002	2440868	1	28	43.2002	2.4E-09	1		
2440870	0	15	31.6002	2440870	0	15	31.6002	2.3E-09	1		
2440870	3	45	37.1252	2440870	3	45	37.1252	2.4E-09	1		
2440870	5	42	36.0002	2440870	5	42	36.0002	2.4E-09	1		
2440871	0	28	17.1820	2440871	0	28	17.1820	2.4E-09	1		
2440871	3	23	31.5001	2440871	3	23	31.5001	2.4E-09	1		
2440872	4	11	5.4377	2440872	4	11	5.4377	2.3E-09	1		
2440872	7	28	12.0002	2440872	7	28	12.0002	2.4E-09	1		
2440873	2	1	29.1002	2440873	2	1	29.1002	2.4E-09	1		
2440873	5	19	28.5002	2440873	5	19	28.5002	2.3E-09	1		
2440874	3	4	41.4548	3 2440874	3	4	41.4548	2.4E-09	1		
2440874	7	12	50.6666	5 2440874	7	12	50.6666	2.4E-09	1		
2440895	23	24	27.8570	2440895	23	24	27.8570	2.4E-09	1		
2440896	0	55	53.7499	2440896	0	55	53.7499	2.4E-09	1		
2440897	1	40	29.9999	2440897	1	40	29.9999	2.3E-09	1		
2440901	0	32	19.7142	2440901	0	32	19.7142	2.4E-09	1		
2440901	3	9	30.0000	2440901	3	9	30.0000	2.4E-09	1		
2440902	0	35	38.0004	4 2440902	0	35	38.0004	2.4E-09	1		
2440902	3	55	18.0004	4 2440902	3	55	18.0004	2.4E-09	1		
2440902	7	16	42.8576	5 2440902	7	16	42.8576	2.4E-09	1		
2440903	5	0	55.6671	2440903	5	0	55.6671	2.4E-09	1		
2440907	5	45	34.0005	5 2440907	5	45	34.0005	2.4E-09	1		
2440907	9	3	38.7005	5 2440907	9	3	38.7005	2.4E-09	1		
0440007	10	20	00 5005		10	20	00 5005	0 45 00			

Dummy observations

INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

	2013	2016	2018	2020	2022	2025	2030
Gdot	1,59E-14	7,73E-15	5,43E-15	3,78E-15	2,74E-15	1,72E-15	1,10E-15
KGP	3,38E-04	2,10E-04	1,55E-04	1,15E-04	1,01E-04	7,83E-05	6,27E-05
beta	6,43E-04	4,16E-04	2,73E-04	2,11E-04	1,88E-04	1,49E-04	1,22E-04

ARRAYS:

STATIONS:

AP11-AP14-AP15 Moon Express 65N 40W Astrobotic 50S 35E Israel 45N 27.2E

APOLLO CERGA MLRS MLRO

Future prospects

INFN Istituto Nazionale di Fisica Nucleare

Future prospects

- Deepen our knowledge about data and software in order to better estimate the K_{GP} uncertainty and other GR parameters.
- Improve the precision of these kind of measurements ranging not only to the Moon, but also to satellites around the Earth and primarily to LAGEOS, thus improving station intercalibration.
- We have the option to implement the equations of motion of space-time torsion gravity inside PEP and study <u>not only the</u> <u>secular variation</u> of geodetic precession, but also <u>periodic</u> <u>signatures</u> of torsion on the geodetic precession and on other PPN parameters

Laboratori Nazionali di Frascat

THANK YOU FOR YOUR ATTENTION

ANY COMMENTS/QUESTIONS?

Manuele Martini