Dark matter searches at Jefferson Laboratory

A. Celentano INFN Genova

Dark Photons

 Consider an additional U(1) hidden symmetry in nature: this leads to a kinetic mixing between the photon and the new gauge boson A'

 $\overset{\gamma}{\underset{\Psi}{\overset{\Psi}{\longrightarrow}}}\overset{\Psi}{\overset{\gamma'}{\underset{\Psi}{\longrightarrow}}}$

 Ψ is a huge mass scale particle (M~1EeV) coupling to both SM and HS

• General hypothesis to incorporate new physics in the SM: the A' acts as a "portal" between the SM and the new sector

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\varepsilon}{2} F'_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + m_A^2 A'^{\mu} A'_{\mu}$$

• Under A' interaction, ordinary charged matter acquires a new charge **ɛe**:

New interaction term:

$$\varepsilon A'_{\mu}J^{\mu}_{EM}$$

A' existence indications

- The measured excess in positron fraction (AMS, FERMI, PAMELA) can be explained by dark matter decaying or annihilating in A', which in turns decays to e⁺ e⁻
- A' can explain muon anomalous magnetic momentum (> 3 σ deviation experiment-SM)

These indications point to the same region in the A' parameter space:

 $\epsilon \sim 10^{-2} - 10^{-5}$ M_{A'} ~ MeV - GeV This region can be explored with particles experiments at accelerators!

Dark photons and dark matter

Most of the dark matter searches so far focused on WIMPS:

• High mass (10 GeV – 1 TeV)

10 MeV – 1 GeV

• Low cross-sections for interaction with SM matter (10 $^{\text{-15}}\,\mu\text{barn})$

Dark photons with ~ GeV mass coupled to DM would permit to explore DM existence in the mass region:

Complementary search to explore another region in the parameter space $M_{_{\rm DM}},\,g_{_{\rm D}}$

Important!

Testing the idea of dark sectors requires a collection of searches sensitive to all possible A' decays, visible & invisible.

Dark photons and dark sector

A simple model:

- A' interacts with γ trough kinetic mixing
- Dark sector particle χ interacts with A'

4 parameters: $M_{A'}, M_{\chi}, \varepsilon, g_d$

A' decay:

HPS experiment at JLab (approved, expected to run in 2014 - 2015)

A' searches in particle physics

Bjorken, Essig, Schuster, Toro, Phys. Rev. D 80 (2009) 075018

HPS

HAR

 ν -Cal I

E137

The HPS experiment at JLab

The HPS experiment at Jlab:

- Searches for A' in a fixed tungsten-target setup with an e⁻ beam.
- Employs both resonance search and detached vertexing techniques
- Uses a high-rate, high-acceptance, high-resolution detector.

JLAB officially approved experiment. Data taking starts in December 2014

Experimental reach: 2 σ contours

- Continuos contour: planned for 2014-2015 \sim
 - 1 week @ 1.1 GeV, 50 nA
 - 2 weeks @ 2.2 GeV, 250 nA
- Dashed contour: still being discussed
 - 2 weeks @4.4 GeV, 350 nA

Within few years HPS will explore a unique region in the A' parameter space.

The HPS experiment at JLab

HPS will run in the Hall B of Jefferson Laboratory (Newport News, Virginia)

- Electron beam with tunable energy (2.2 GeV per pass, up to 11 GeV, 12 GeV in Hall-D)
- Continuous beam, 4ns bunches
- I_{beam} < 800 nA @ Hall B
- $I_{beam} < 100 \ \mu A @$ Hall A, C

HPS detector:

- Thin W target (~ $10^{-3} X_0$)
- Dipole magnet
- Si-tracker (5 layers w. axial/stereo modules)
 - Momentum analysis
 - Vertexing
- PbWO₄ calorimeter
 - Triggering

The HPS experiment at JLab

A' signal kinematic features:

- Very forward A' emission angle, ${\rm E}_{\rm A'} \sim {\rm E}$
- Decay products opening angle $\sim m_{\rm A'}^{}$ / E
- Possible detached decay vertex

Main background sources:

- Radiative l⁺ l⁻ emission (irreducible)
- Bethe-Heitler processes (different kinematics)

Signal searches:

- "Bump hunting" in narrow invariant mass windows
- Detached vertexing

Dark photons and dark matter

The simplest model:

- A' interacts with γ trough kinetic mixing
- DM χ interacts with A'

4 parameters: $M_{A'}, M_{\chi}, \varepsilon, g_d$

A' production: $\sigma\propto arepsilon^2$

A' decay:

Second scenario

• Only if
$$M_{\chi} < M_{A'} / 2$$

- Not ε-supressed
- If present, is the preferred A' decay mode
- If present, visible decays are ε² suppressed

BDX experiment at JLab (LOI to be submitted to Jlab PAC) BDX: beam dump experiments for DM

searches

Two-Step Detection Process:

- **Fixed-target:** A' produced in the dump, decays promptly to invisible χ
- Detector: Neutral-current scattering of χ trough A' exchange, detect recoil. Different signals depending on the interaction (e⁻ scattering, coherent nuclear, quasielastic,..)

 e^{-}

Beam

Background sources:

- **Beam-related:** mainly neutrinos, provided the dump is thick enough to shield other particles.
- **Cosmogenic:** muons and neutrons. Can shield or veto

BDX@JLab

$\boldsymbol{\chi}$ production and detection

- Energy = 11 GeV
- CW beam (4ns spacing between bunches)
- Response studied as a function of the detection threshold (1 MeV and 10 MeV)
- Realistic simulation in GEANT4
 - Detector and beam-dump
 - Signal and background

recP	ecP	
Ē		Entries 63512 Mean 0.004291 RMS 0.01119
104		
N		
. E ∖	M. Malana	
E	mar way way and a second	
10	^ա տելել ԴԴԴԿՆԿ _{ՆԿ}	
- E - I		····
E		
Ē		

	S.I	S.II
M_{χ}	$10 { m MeV}$	$68 { m MeV}$
$M_{A'}$	$50 { m MeV}$	$150~{\rm MeV}$
ϵ	10^{-3}	10^{-3}
α_{Dark}	0.1	0.1
\mathbf{N}_{χ} pairs produced per EOT	$3.4 \ 10^{-10}$	$3.4 10^{-11}$
$\sigma_{\chi-p}$	1.4 nb	$0.14 \mathrm{~nb}$

BDX@JLab

Beam related BG

- Only neutrino are produced
- No other particles (n and charged)

Beam-related background is negligible

1k e-

BDX@JLab: background rates

Beam related BG

- Neutrinos
- Neutrons (<1 for 1s beam simulation)

Beam unrelated BG

- Cosmic µ
 - Crossing
 - Captured/ decaying within the detector
 - Stopped in shielding
 - Rare γ decays
- Cosmic neutron
- Cosmic neutrinos

BG reduction

- Time coincidence cut
- Directionality
- Particle id (e⁻/p separation)

	$\operatorname{Rate}_{Thr=1MeV} \ (\mathrm{Hz}/\mu A))$	Rate $_{Thr=10MeV}$ (Hz/ $\mu A))$
χ detection - S.I	$1.0 \ 10^{-5}$	$1.2 \ 10^{-6}$
χ detection - S.II	$2.0 \ 10^{-7}$	$0.7 \ 10^{-7}$
B-rel ν	$2.0 \ 10^{-9}$	$2.0 \ 10^{-10}$
B-rel neutron	0	0
	Rate $_{Thr=1MeV}$ (Hz)	Rate $_{Thr=10MeV}$ (Hz)
B-unrel ν	$2.0 \ 10^{-6}$	$2.0 \ 10^{-7}$
B-unrel neutron	$2.7 \ 10^{-3}$	$0.6 \ 10^{-3}$
Crossing muons	$3.3 \ 10^{-3}$	$3.5 \ 10^{-3}$
Captured μ^+	$1.4 \ 10^{-3}$	$2.4 \ 10^{-3}$
Decaying μ^- (CORM)	$2.9 \ 10^{-3}$	$4.8 \ 10^{-3}$
Stopped μ in lead	$7.0 \ 10^{-3}$	$4.3 \ 10^{-3}$
μ^- rare decay	$2.0 \ 10^{-5}$	8.0 10 ⁻⁶
Total Beam-unrelated bg	$1.7 \ 10^{-2}$	$1.5 \ 10^{-2}$

- Background sources are well-known and can be identified and/or reduced
- A full measure campaign of beam-unrelated BG is planned, using a detector prototype

BDX@JLab: reach

BDX@JLab

- 1m³ plastic scintillator detector
- 1 MeVee threshold
- $I_{e} = 100 \ \mu A$ (Hall-A beam-dump)
- 1y run (50% run efficiency) = 10^{22} EOT m_{h^x} (GeV)

	Counts $_{Thr=1MeV}$	Counts $_{Thr=10MeV}$
χ detection - S.I	$0.5 \ 10^6 \ \pm \ 700$	$5.7 \ 10^4 \pm \ 240$
χ detection - S.II	$1.0\ 10^4\ \pm\ 100$	$3.3 \ 10^3 \pm 60$
Beam-rel bg	100 ± 10	10 ± 3
Beam-unrel bg	$1.6\;10^6\pm\;1300$	$1.4 \ 10^6 \pm \ 1200$

Model-independent background estimate. Determines the experiment sensitivity

Letter of Intent (LOI) to be presented to JLab Program Advisory Committee PAC42 Full proposal to the next JLAB PAC meeting

BDX R CD

CORMORINO: detector prototype

- Plastic scintillator-based detector, 40 x 30 x 30 cm³
- 3x3 matrix of 40 cm bars, read at both ends by fast PMT
- FADC-based fast DAQ
- Veto and shield design in progress
- Validation of simulations for cosmogenic BG

BDX R CD

CORMORINO: detector prototype

- Plastic scintillator-based detector, 40 x 30 x 30 cm³
- 3x3 matrix of 40 cm bars, read at both ends by fast PMT
- FADC-based fast DAQ
- Veto and shield design in progress
- Validation of simulations for cosmogenic BG

R & D for improvements:

- Liquid scintillator (PID)
- SiPMs instead of PMTs
- Extrude plastic with fibers readout

BDX@LNJ

$\boldsymbol{\chi}$ production and detection

- 1.5 GeV electron beam
- 7 10¹⁹ EOT/year
- 1 year run (50% efficiency)
- Repetition rate: 50 Hz, (0.7A in 10 ns bunch)
- Negligible cosmogenic BG with timing cut
- Expected ~20 counts in 1m³ plastic scintillator detector (1 MeVee threshold)
- Significant sensitivity to low mass (A'/ χ) region

Very preliminary study. Results look very promising and should be investigated further.

Parameters:

 $M_A' = 50 \text{ MeV}$ $M_Chi = 10 \text{ MeV}$ $Alpha_dark = 0.1$ $Epsilon = 10^-3$

Conclusions

If there is an additional U(1) hidden symmetry in nature, ordinary photons would interact with the new gauge boson A' trough kinetic mixing. **The A' acts as a "portal" between SM and a new, hidden sector (DM?).** The simplest model foresees 4 parameters: $M_{A'}$, ε , M_{χ} , g_{d}

- **"Minimal" scenario:** if $M_{A'} < 2 M_{\gamma}$, then the A' decays only to SM particles.
 - A' is measured trough the SM decay products. Only $M_{_{A'}}$, ϵ are relevant.
 - HPS @ JLAB: Approved experiment, 2014-2015 foreseen run.
 - "Bump-hunting" and detached vertexing techniques
 - Explore a **new region** in the parameters space. Results expected within few years.
- **"Evoluted" scenario:** if $M_{A'} > 2 M_{\gamma}$, then the A' decays invisible to $\chi\chi$
 - Detector placed behind a beam dump to shield all SM particles (except v).
 - χ detected trough the A'-mediated interaction in the detector: elastic recoil on protons.
 - BDX experiment @ JLAB. LoI currently being proposed to JLab PAC42
 - 1 m³ plastic scintillator detector placed behind the Hall-A beam dump.
 - Beam related and un-related backgrounds evaluated trough MC simulations.
 - Cosmogenic backgrounds will be measured using a detector small-scale prototype.
 - Experiment sensitivity evaluated to be ~ 3000 events for a 6-month run with 10²² EOT.

Back up

MiniBooNE

MiniBooNE DM search:

- 8 GeV protons on a 50m beam dump
- Detector ~ 500 m after the beam dump
 - 800 t mineral oil, 1280 PMTs

MiniBooNE test run (2013):

- 0.4 10²⁰ protons on target
- "Off-axis" configuration to reduce vbackground (reduction factor \sim 42)
- Selection cuts for DM events:
 - Timing (χ can travel slower than c)
 - Energy (different χ – ν energy deposition)

MiniBooNE 2014 proposal: 2 10²⁰ PoT

Preliminary, M_{Λ} = 300 MeV, α '=0.1

First generation fixed target experiments: beam dump

Beam dump experiments for A' search:

- e⁻ beam incident on thick target
- A' is produce in a process similar to ordinary Bremsstrahlung
- A', emitted forward at small angle, carries most of the beam energy and decays before the detector
- Decay products are measured in the detector

