NMSSM studies

Giacomo Polesello & Andrea Romanino

Enhancement of Higgs mass: how?

- NMSSM: MSSM + \hat{S}
 - minimal λSH_uH_d (symmetries forbid μH_uH_d)
 - harmless (unification OK)
 - welcome $(\mu = \lambda < S > \approx susy scale)$
- Extra tree level contribution $m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \log 2\beta$

- 1. Post-LHC fine-tuning level (present and LHC-14 reach)
- Relation with stop/gluino reach in simplified models (LHC-14, HL-LHC, LHC-33, 100TeV) specific signatures?
- 3. Higgs sector reach: i) direct production of new states, ii) deviation from SM couplings and invisible channels. In particular at HL-LHC. Is ii) competitive with direct searches, are there chances of measuring a deviation?
- 4. Benchmark points (ebbene sì), one within LHC-14 and one not (and their FT)
- 5. Theoretical background (realistic model)

	1	2	3	4	5
Enrico Bertuzzo					
Maria Ilaria Besana					
Dario Buttazzo					
Roberto Franceschini					
Tommaso Lari					
Giacomo Polesello					
Andrea Romanino					
Filippo Sala					
Andrea Tesi					
Riccardo Torre					
Count	2	5	3	2	1

SUSY & NMSSM

1: fine-tuning level

Figure 8: Scatter plots of (a) the combined tuning $\Sigma^h \Sigma^v$ and (b) the lightest stop mass $m_{\tilde{t}_1}$, as a function of the gluino mass $m_{\tilde{g}}$. The scatter plots in (c) and (d) show the lightest neutralino mass $m_{\tilde{\chi}_1^0}$ as a function of (c) the gluino mass $m_{\tilde{g}}$ and (d) the lightest stop mass $m_{\tilde{t}_1}$. The green, blue and red points correspond to a combined tuning $(\Sigma^h \Sigma^v)$ better than 5%, between 1% and 5%, and worse than 1%, respectively. All points satisfy the constraints discussed in sec. 5.

1: fine-tuning level

Gherghetta, von Harling, Medina, Schmidt

 10^{4} mass [GeV] 10_3 10^{2} $\begin{array}{c} s_{2} \ s_{3} \ a_{1} \ a_{2} H^{\pm} \tilde{\chi}_{1}^{0} \ \tilde{\chi}_{2}^{0} \ \tilde{\chi}_{3}^{0} \ \tilde{\chi}_{4}^{0} \ \tilde{\chi}_{5}^{0} \ \tilde{\chi}_{1}^{\pm} \ \tilde{\chi}_{2}^{\pm} \ \tilde{t}_{1} \ \tilde{t}_{2} \ \tilde{b}_{1} \ \tilde{b}_{2} \ \tilde{g} \\ \textbf{particles} \end{array}$ h

2: reach, signatures

- Neutralino spectrum: $N_1...N_4 \rightarrow N_0 N_1...N_4$ (fermion component of S)
- Possibly longer decay chains. E.g. with a light singlino N₁ → N₀ X gluino →q q' N₁ becomes gluino →q q' X N₀
- Smaller mET, determined by N₁ (and further reduced by M_X) \rightarrow weaker limits compensated by the richer final state (10% reduction)?
- Connection with DM: if LSP is mainly a singlino, it needs to mix significantly with Higgsino (hence similar masses, hence smaller mET)

→ Giacomo and Tommaso

3: Higgs sector

- new scalar S = s+ia
- neutral CP-even Higgs:
 - h_u h_d s alternatively
 - h H s (h linear combination getting vev)
- h_{126} is mainly h, with up to 30% s, and small H component
- implications for Higgs couplings and invisible channels?
- h₁₂₆ is lightest or next-to-lightest?
- connection with neutralino spectrum?

Figure 1. Current and foreseen LHC reaches for $\lambda = 0.8$ (left) and $\lambda = 1.4$ (right). The colored regions are excluded at 95% C.L.; the dashed lines are the expected limits.