Possibilities for future kaon experiments at the SPS

Matthew Moulson NA62 Frascati

INFN CSN1 Long-Term Strategy Workshop Isola d'Elba, 22 May 2014

Disclaimers

Discussion about the future of NA62 after $K^+ \to \pi^+ \nu \bar{\nu}$ is just getting started.

Many different ideas are under development.

For the purposes of discussion, I will try to survey some of them.

I am not presenting official NA62 perspectives.

Preface: Fixed target runs at the SPS

General assumption:

SPS available for fixed-target during LHC runs

F. Bordry, CERN Roadmap, Feb 2014

(Extended) Year End Technical Stop: (E)YETS

3'000 fb-1

Current topics in kaon physics

Traditional observables: CP violation in K_SK_L (ε , ε'/ε), Δm_K

Much progress on lattice, but likely to remain theory-limited for several years

Precision observables: V_{us} , $R_K = \Gamma(K \rightarrow ev)/\Gamma(K \rightarrow \mu v)$

Not theory limited, but experimental results hard to improve upon

K decays with explicit LFV

 K_L : Excellent experimental limits, tight model constraints, further progress hard

 K^+ : Searches can be improved by 1-2 orders of magnitude to catch up to K_L

FCNC decays: Clean short-distance probes

 $\pi v \bar{v}$: SD dominated, SM intrinsic theory uncertainties at the few % level

 $\pi^0 \ell^+ \ell^-$: Nominally easier experimental signatures, some irreducible backgrounds

Larger theoretical uncertainties, need progress on ancillary measurements

Searches for heavy, sterile neutrinos in *K* decay

Other topics:

CPT limits, K_SK_L interferometry, T-odd μ polarization in $K_{\mu 3}$

Kaon experiments: World outlook

$K \rightarrow \pi v \bar{v}$ experiments running, planned, or proposed

Expt.	Primary beam (E GeV)	Secondary beam (E GeV)	Start date + run years	SM evts	Status
NA62	SPS (450)	positive (75)	2014+2	50/yr*	Ready
ORKA	FNAL MI (95)	K^{+} (0.6, stopped)	2020+5	200/yr*	Proposal
КОТО	JPARC-I (30)	neutral (2 peak)	2013+3	~3	Running
KOTO/2	JPARC-II (30)	neutral (~2 peak)	2025?	>100	Concept
$FNALK_L$	Project X (3)	neutral (0.7 peak)	2030?	1000	Concept

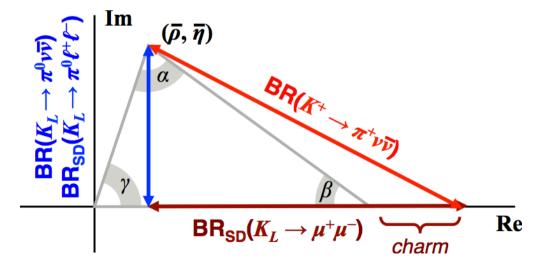
Prospects for $K^+ \to \pi^+ \nu \bar{\nu}$ much more solid than for $K_L \to \pi^0 \nu \bar{\nu}$ No experiments looking at $K_L \to \pi^0 \ell^+ \ell^-$

Other "kaon" experiments

Expt.	Facility	K source	Program
TREK	JPARC	K^+ stopped	R_K , T -odd μ polarization in $K_{\mu 3}$
KLOE/2	DAONE	$\phi \to KK$	Continued analysis of KLOE K_S , K_L , K^{\pm} data
LHCb	LHC	K_S in flight	Good stat. reach for $K_S \! \to \mu^+ \mu^-$, $K_S \! \to \pi^0 \mu^+ \mu^-$

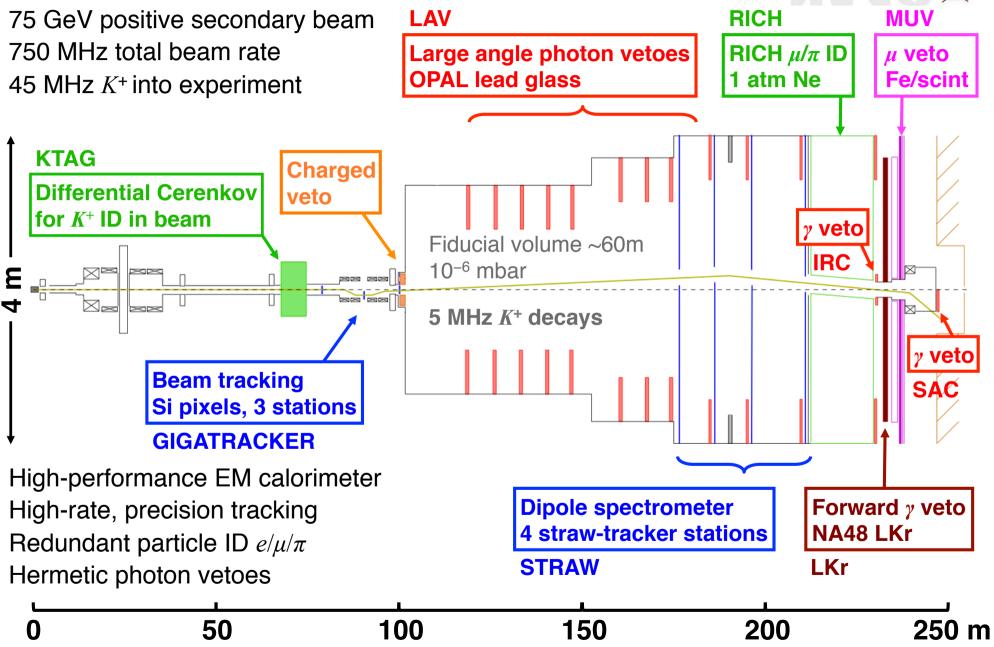
Rare kaon decays

Some modes more important than others, but best to measure as many as possible

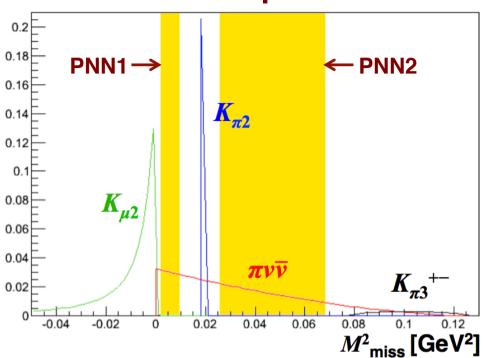

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR × 10 ⁻¹¹	Exp. BR × 10 ⁻¹¹
$K_L \rightarrow \mu^+ \mu^-$	40%	20%	681 ± 32	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28 [†]
$K_L o \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38 [†]
$K^+ \to \pi^+ \nu \overline{\nu}$	90%	4%	7.8 ± 0.8	17 ± 12
$K_L \rightarrow \pi^0 v \overline{v}$	>99%	2%	2.4 ± 0.4	<26000 [†]

^{*}Approx. error on LD-subtracted rate excluding parametric contributions †90% CL

New physics affects channels differently


Straub '10 Straub '10 SM4 RSc 10¹⁰ × BR($K^+ \rightarrow \pi^+ \nu \nu$)

Overconstrain unitarity triangle



The NA62 experiment at the SPS

NA62 performance for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Acceptance: ~12%

3% in PNN1 region9% in PNN2 region50% loss from momentum cutDetector inefficiencies included

45 signal events/year

- 1 track with 15 < p_{π} < 35 GeV and π PID in RICH
- No γs in LAV, LKr, IRC, SAC
- No μ s in MUVs
- 1 beam particle in Gigatracker with K PID by KTAG
- z_{vtx} in 60 m fiducial volume

Expected backgrounds		
$K^+ \longrightarrow \pi^+ \pi^0$	10%	
$K^+\! o \pi^+ \pi^0 \gamma_{IB}$	3%	
$K^+ \rightarrow \mu^+ \nu$	2%	
$K^+ \rightarrow \mu^+ \nu \gamma_{IB}$	1%	
$K^+\! o \pi^+\pi^+\pi^-$	< 1%	
$K^{+}_{\ e4}$, other 3 track decays	< 1%	
$K^{+}_{\ e3},K^{+}_{\ \mu 3}$	negligible	
Total	< 20%	

NA62 sensitivity vs. ORKA

Official sensitivity estimates can be misleading due to differences in assumptions for run time, etc.

Is ORKA really 10× more sensitive than NA62?

	NA62	ORKA
SM signal events	~100	~1000
Years of data taking	2	5
Data-taking per year	4×10^6 s "100 days, 50% uptime"	18×10^6 s "5000 hours"
Total data taking	$8 \times 10^6 \text{ s}$	$90 \times 10^6 \text{s}$
SM events/NA62 year	~50	~50

Most of the difference just from time scheduled for data taking!

DOE P5 panel report released at 16:00 CEST today P5 "cannot recommend moving ahead at this time" on ORKA

NA62 in the near future

Goal: Measure BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) to 10% Collect ~100 signal events with S/B > 10 in 2-years' equivalent data taking

Other elements of physics program:

- Measurement of R_K to ~0.2%
- Searches for LFV K^+ and π^0 decays
- ChPT tests & precision BR mmts.

Start of NA62 running: October 2014

Possible to request more running during Run 2 to improve sensitivity!

Planned and potential upgrades:

- New trigger hodoscope
- Small changes to level-0 architecture to allow more restrictive triggering
- Continuous WFD readout for critical detectors (e.g. LAVs)?

Ambitious upgrades to justify running in Run 3?

None proposed yet, but NA62 just starting up: First need to get experience

NA62: From K^+ to K_L

Possibility of a neutral beam forseen in the NA62 Technical Proposal:

- Slight changes to production angle and upstream beam optics
- Running for $\pi^0 v \bar{v}$ and $\pi^0 \ell^+ \ell^-$ will require a substantial increase in primary intensity, but **well within** what the SPS can provide

	NA62 K ⁺ beam	Future NA62 K_L beam
Primary intensity (ppp)	3×10^{12}	2.4×10^{13}
Production angle for secondary (mrad)	0	2.4
Angular acceptance (µsr)	12.7 µsr	0.125 μsr
Momentum	75 GeV ±1%	97 GeV (mean) 40-140 GeV (50% peak)
Rates into FV	750 total 525 π 170 p 45 K^+	$3000 ext{ total}$ $2000 extit{ } \gamma$ $800 extit{ } n$ $90 extit{ } K_L$
K decays in FV	4.5 MHz 4.5 × 10 ¹² /year	0.9 MHz 9 × 10 ¹¹ /year

$$K_L \longrightarrow \pi^0 \nu \bar{\nu}$$

NA62 Italy subset has **PRIN funding** for feasibility studies for a K_L experiment **FERRARA, FIRENZE, FRASCATI, NAPOLI, PERUGIA, PISA, TOR VERGATA, TORINO**

Estimate cost, timescale, performance for an SPS $K_L o \pi^0 v \bar{v}$ experiment

Questions to address:

- What are the pros and cons of a $K_L \to \pi^0 v \bar{v}$ experiment at high energy?
- What is the intensity and composition of the neutral beam?
 What can we do to suppress beam photons?
- What performance will be required for large-angle photon vetos?
- Is the performance of the NA48 LKr calorimeter suitable?
- Can a preshower detector in front of LKr provide useful geometrical constraints?
- What will be required in terms of charged-particle vetos?
- What technology is needed for the in-beam veto to stop photons from escaping downstream through the beam pipe?

 How to cope with GHz fluxes of beam photons and neutrons?
 - How to cope with GHz fluxes of beam photons and neutrons?
- What baseline architecture to adopt for triggering/data acquisition?

PRIN studies: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ at the SPS

Beam sweeper: Reduce 2 GHz of beam photons by at least 10×

May require innovative approach: Iridium monocrystal?

Large angle photon vetoes:

Hermetic coverage out to 100 mrad for E_{ν} down to 20 MeV

26 new LAV stations with scintillator/tile design

Small angle photon vetoes:

Be relatively insensitive to 800 MHz of beam neutrons

Amdist this background, reject γ from $\pi^0\pi^0$ to 10⁻³ level

Prototypes under development:

Converter + NA62 Gigatracker (Si pixel)-based veto

Dense inorganic Cerenkov crystal veto

Expected results with 2 yrs of data:

 $\pi^0 v \overline{v}$ cand. with 2γ on LKr, nothing else Vertex in FV with $p_{\perp}(\pi^0) > 0.1$ GeV

~10 signal evts

~10 $\pi^0\pi^0$ background evts

Nominally 2× better than KOTO (JPARC)

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment will require long lead time

- Significant construction work, R&D, prototyping necessary
- Aim for turn-on in Run 3 or for a more ambitious measurement in Run 4?

$$K_L \rightarrow \pi^0 \ell^+ \ell^-$$
 at NA62?

$$K_L \! o \pi^0 \ell^+ \ell^-$$
 vs $K \! o \pi v ar v$:

 Measurements are complementary and can help to discriminate among NP models

Different operators contribute to $K_L \to \pi^0 \ell^+ \ell^-$ and $K \to \pi \nu \bar{\nu}$

- Nominally easier experimental signatures for $\pi^0\ell^+\ell^-$, but some irreducible backgrounds (esp. for $\pi^0e^+e^-$)
- Larger theoretical uncertainties, need progress on ancillary measurements such as $BR(K_S \to \pi^0 \ell^+ \ell^-)$

Modifications to NA62 needed for $K_L \to \pi^0 \ell^+ \ell^-$ are straightforward

- Removal of CEDAR, Gigatracker
- Realignment of straws, RICH; new IRC
- Possibly new SAC to handle higher rates

Potential for $K_L \to \pi^0 \ell^+ \ell^-$ experiment was studied by NA48

Good basis for extrapolation to NA62

$$K_L \rightarrow \pi^0 \ell^+ \ell^-$$
 at NA62?

Extrapolated from studies for NA48

 $1.8 \times 10^{12} K_L$ decays in FV (2 year run, $0.9 \times 10^{12} K_L$ /year)

	$K_L ightarrow \pi^0 e^+ e^-$	$K_L ightarrow \pi^0 \mu^+ \mu^-$
SM BR	3.5×10^{-11}	1.4 10 ⁻¹¹
Acceptance	3%	18%
SM signal events	~2	~5
S/B	~1/10	~1/6

 $K_L \to \pi^0 e^+ e^-$ channel is plagued by $K_L \to e^+ e^- \gamma \gamma$ background

- Like $K_L \rightarrow \gamma \gamma$ with internal conversion + bremsstrahlung
- 3% acceptance for $K_L \to \pi^0 e^+ e^-$ reflects tight cuts on Dalitz plot to reject
- Need to explore other strategies: statistical separation, kinematic fitting
- NA62 has better 2-3× better mass resolution on ℓℓ vertex than NA48

Needs further study, but $K_L \to \pi^0 \ell^+ \ell^-$ could be an interesting part of early-stage K_L running at NA62

NA62 potential for heavy neutrino searches

SM needs extension to address:

- Neutrino masses
- Baryon asymmetry
- Dark matter

Example: Neutrino minimal SM (vMSM)

3 new heavy, sterile RH Majorana $vs: N_{1,2,3}$

 $m_1 \sim 10 \text{ keV} \rightarrow \text{DM}$ candidate

 $m_2 \sim m_3 \sim 1 \text{ GeV} \rightarrow \text{Observable in } K, D \rightarrow N\ell$

NA62 can perform an exclusive search for $N \rightarrow e\pi$ or $\mu\pi$

K decays

Upstream: K decays in space between Be target and RP shield wall

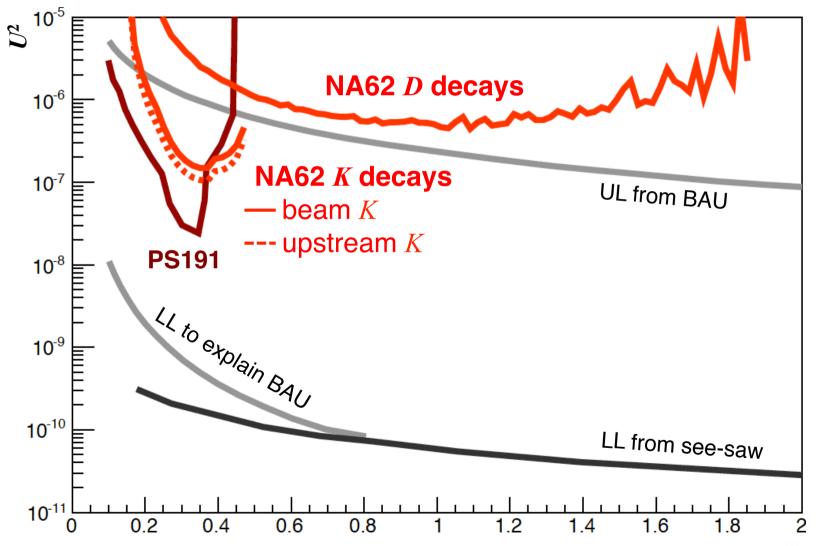
Beam: K decays in 100 m downstream of KTAG, upstream of Straw 1

D decays

Fully analogous to SHiP experiment; lower intensity

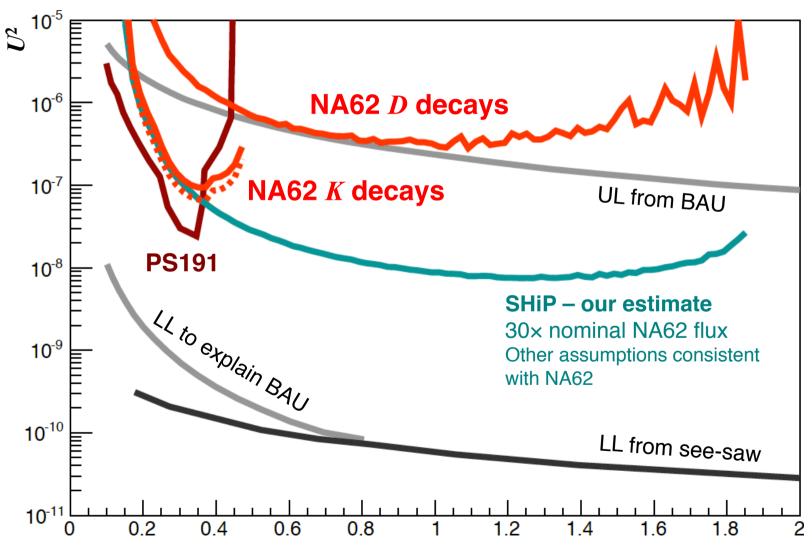
NA62 can carry out such a search during $K^+ \to \pi^+ \nu \overline{\nu}$ running

No substantial hardware modifications needed

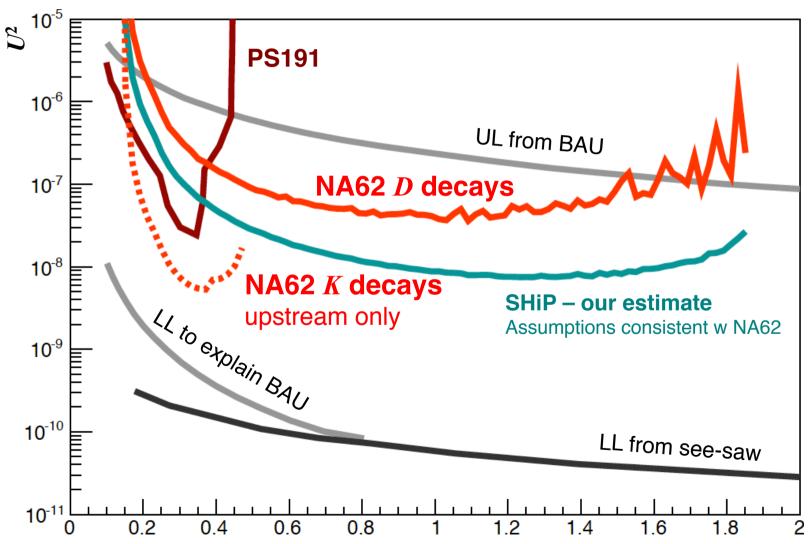

- May need some small hardware modifications to the NA62 level-0 trigger
- Subject of a SIR proposal (VISHNU); feasibility studies ongoing

Heavy neutrino search also possible with K_L beam

- Slight reduction in sensitivity (only upstream K decays)
- Need to futher explore compatibility with K_L physics program


Exclusive search for $N \rightarrow \ell \pi$ at NA62

Sensitivity for exclusive search for $N \to e\pi$ or $\mu\pi$ 2 years of data at nominal NA62 K^+ run intensity (3 × 10¹² ppp)


Exclusive search for $N \rightarrow \ell \pi$ at NA62

Sensitivity for exclusive search for $N \to e\pi$ or $\mu\pi$ 5 years of data at nominal NA62 K^+ run intensity (3 × 10¹² ppp)

Exclusive search for $N \rightarrow \ell \pi$ at NA62

Sensitivity for exclusive search for $N \rightarrow e\pi$ or $\mu\pi$ 5 years of data at SHiP intensity (4.5 × 10¹³ ppp)

Heavy neutrinos: Prospective NA62 results

2 years:

- Fortify PS191 limit, particulary for 350 $< m_N <$ 450 MeV
- Full compatibility with NA62 Run 2 program

5 years, nominal NA62 intensity:

- Largely reproduce and extend PS191 limits for N from K decays
- Begin to test vMSM as an explanation for BAU
- Compatible with Run 3 K decay program $(K^+ \to \pi^+ \nu \nu, K_L \to \pi^0 \ell \ell)$

5 years, SHiP-like intensity:

- Substantial improvement on PS191 and SHiP for $200 < m_N < 450$ MeV
- Significant test of vMSM as an explanation for BAU by end of Run 3
- Less sensitive than ultimate SHiP result by ~10×
- Possibly compatible with K_L physics program in Run 3 but needs study

Summary and (rather personal) outlook

The Present: NA62 in Run 2

• Assume dedicated to $K^+ \rightarrow \pi^+ \nu \nu$ and related studies until LS2 in 2018

Various possibilities for NA62 in Run 3

- Upgrades to improve precision on $K^+ \rightarrow \pi^+ \nu \nu$
- Switch to neutral beam; pursue $K_L \to \pi^0 \ell^+ \ell^-$ and prototype studies for $\pi^0 \nu \nu$
- Add shielding and make additional modifications for heavy neutrino search?

Long-term future: NA62 in Run 4

- Likely the best time to run a next-generation $K_L \to \pi^0 \nu \nu$ experiment
- $K_L \rightarrow \pi^0 vv$ is ambitious and will have a long development time
 - Re-uses several elements of the NA62 apparatus, but R&D necessary for new, critical detectors

Monitor developments in physics and experiment over next 5 years

Acknowledgements

Thanks to the following people for contributions

F. Bucci M. Lenti

A. Cassese S. Martellotti

V. Fascianelli V. Martin

F. Gonnella M. Sozzi

E. Imbergamo T. Spadaro

and, of course, to

The NA62 Collaboration