Rare and Radiative Penguin B Decays: Experimental Status

Flavour Working Group

LTSI 2014 Long Term Strategy of INFN-CSNI Elba 22/5/2014

> John Walsh INFN, Pisa

Outline

Very selective...

- $B \rightarrow X_s |^+|^-$
- $B_{s,}B^{0}\rightarrow\mu\mu$
- $B \rightarrow X_s \gamma$
- Brief mention of a few other interesting channels
- Projections

 $B \rightarrow X_s I^+ I^-$

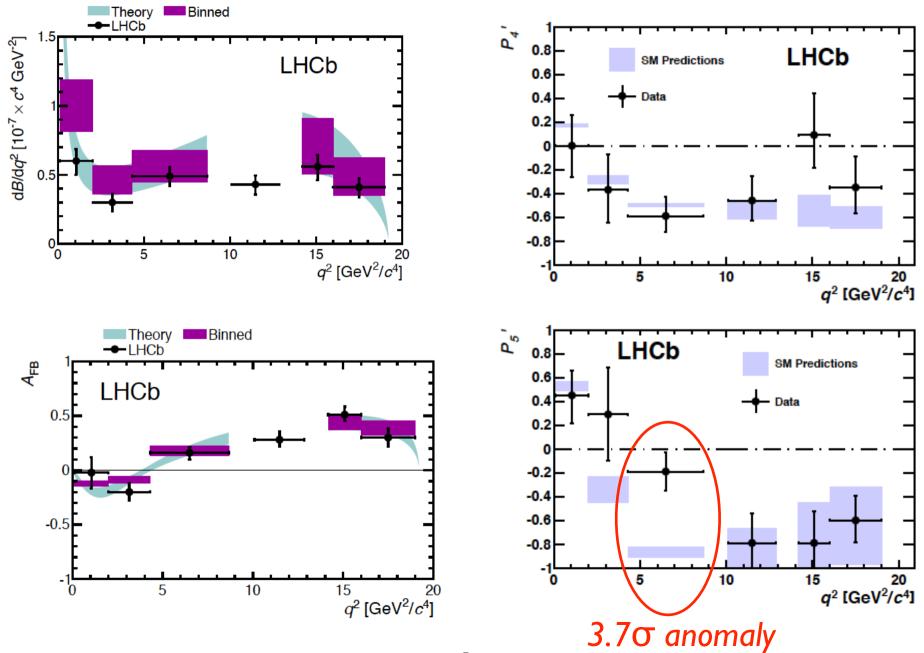
$B \rightarrow K^*I^+I^-$: Observables

"Traditional"

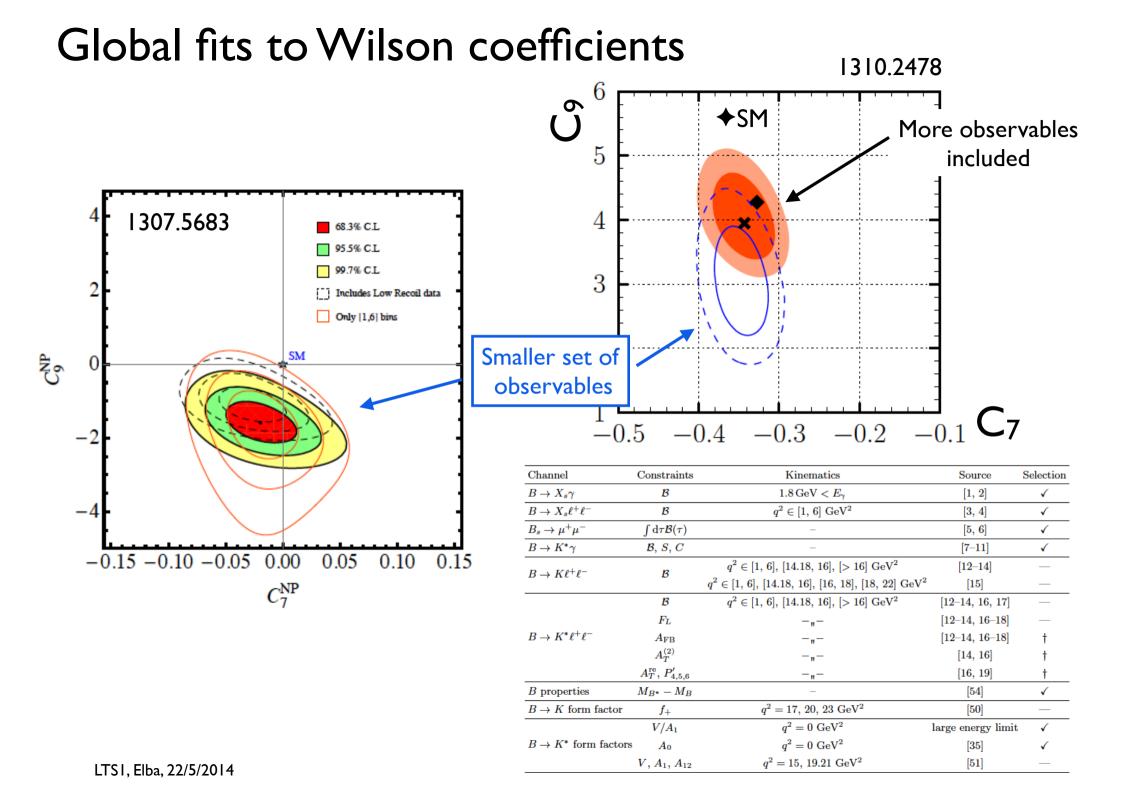
- The more complex final state leads to additional observables:
 - A_{FB}, the forward-backward lepton asymmetry
 - s₀, the A_{FB} zero crossing: this observable has particularly low theoretical uncertainties, thanks to cancellations
 - $R_{K(*)}$, the ratio of $B \rightarrow K(*)\mu\mu/B \rightarrow K(*)ee$
 - F_L , the K* longitudinal polarization fraction in $B \rightarrow K^*II$

"Optimized"

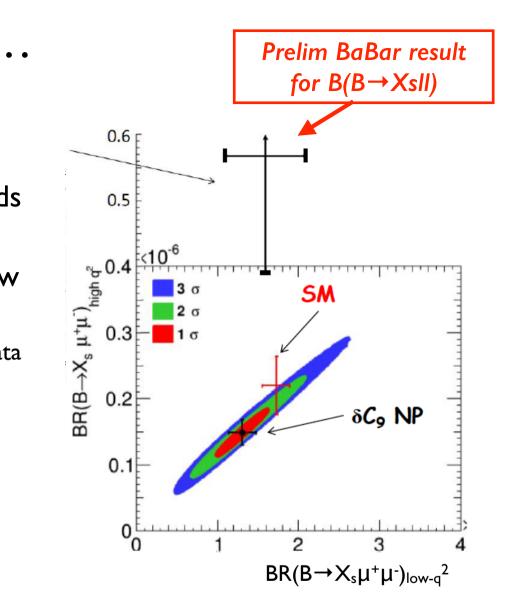
- Optimized for K*µµ physics (LHCb):
 - based on full angular analysis of K*µµ decay
 - ratios of coefficients such that form factor uncertainties cancel
 - several versions have been proposed, *P_i*' have been measured experimentally


Differential decay rate for $B \rightarrow K^*l^+l^-$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right]$$
$$- F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin^2\theta_\ell \cos 2\phi + S_4 \sin^2\theta_\ell \cos \phi + S_5 \sin^2\theta_\ell \cos \phi + S_5 \sin^2\theta_\ell \cos \phi + S_5 \sin^2\theta_\ell \sin \phi + S_6 \sin^2\theta_K \cos^2\theta_\ell + S_7 \sin^2\theta_K \sin^2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right],$$
$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_\mathrm{L}(1-F_\mathrm{L})}}.$$


 $B \rightarrow K^* \mu^+ \mu^- @ LHCb$

based on 1 fb⁻¹



LTSI, Elba, 22/5/2014

Inclusive $B \rightarrow X_s l^+ l^-$ can help...

- Inclusive BF of $B \rightarrow X_s I^+I^-$ also depends on C_9
- Plot BF in high q² region vs. BF in low q² region
 - Colored ellipses: from global fit to K*II data
 - Red cross: SM calculation
 - Black cross: central value of global fit but error bars from expected results from current B-factories
- Preliminary Babar result does not favor ΔC₉ from global fit

More $B \rightarrow X_s I^+I^-$ observables

 Besides the observables derived from an angular analysis of K^{*}µµ, there are others that are important as well:

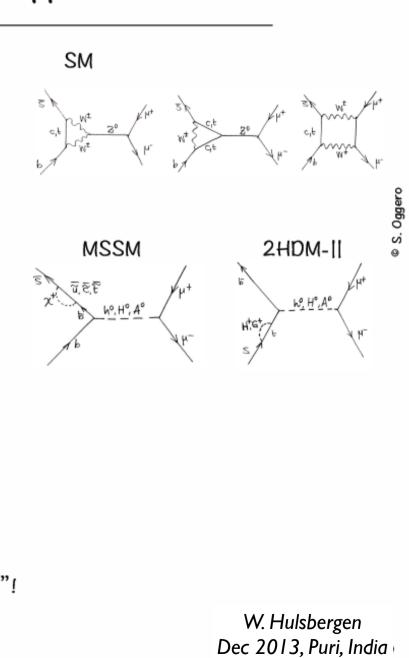
- Isospin asymmetry A_I
- s₀ the A_{FB} zero-crossing point
- $\mathbf{R}_{\mathbf{K}(*)}$ the ratio of $\mathbf{B} \rightarrow \mathbf{K}(*)\mu\mu$ to $\mathbf{B} \rightarrow \mathbf{K}(*)$ ee
- direct A_{CP}
- Relevant also for the exclusive K $(B \rightarrow K \mu \mu)$ and electron $(B \rightarrow K^{(*)}ee)$ modes, as well as the inclusive process, $B \rightarrow X_s I^+I^-$

$B_s^0, B^0 \rightarrow \mu \mu$

$B_s \rightarrow \mu \mu$ and $B_d \rightarrow \mu \mu$

Very rare decays in SM:

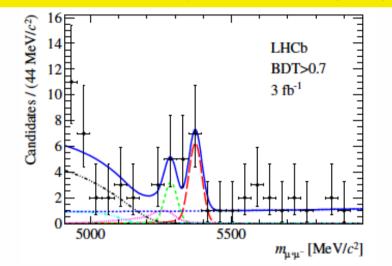
- no tree-level FCNC
- helicity suppression
- CKM suppresion
- ... none of which is necessarily true in NP!

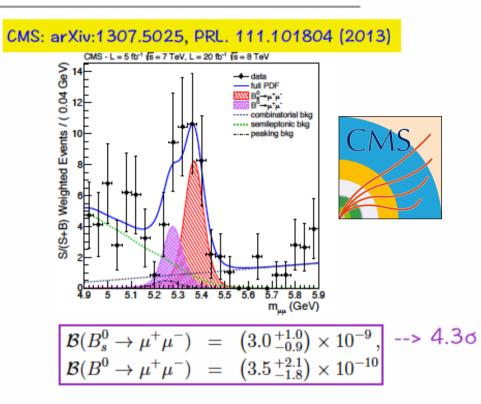

Precise SM predictions

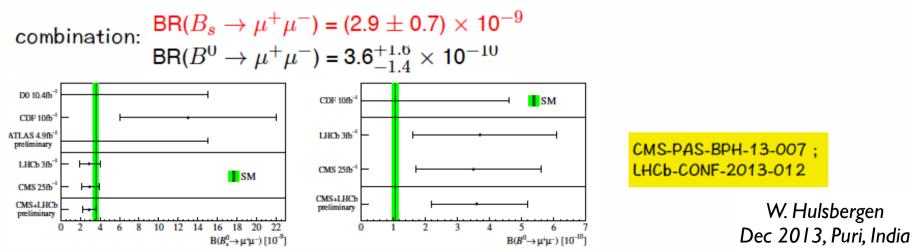
- $Br(B_{d} \rightarrow \mu\mu) = (1.1 \pm 0.2) 10^{-10}$
- $Br(B_{s} \rightarrow \mu\mu) = (3.5 \pm 0.2) 10^{-9}$

Buras et al, EPJ C72 (2012) 2172; see also PRL109 (2012) 041801

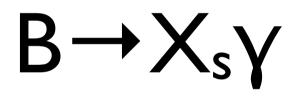
Strong enhancement in e.g. MSSM: Br $\propto \tan^6\beta$


Previously known as the "golden channel" for NP discovery ... more recently named the "SUSY killer"!

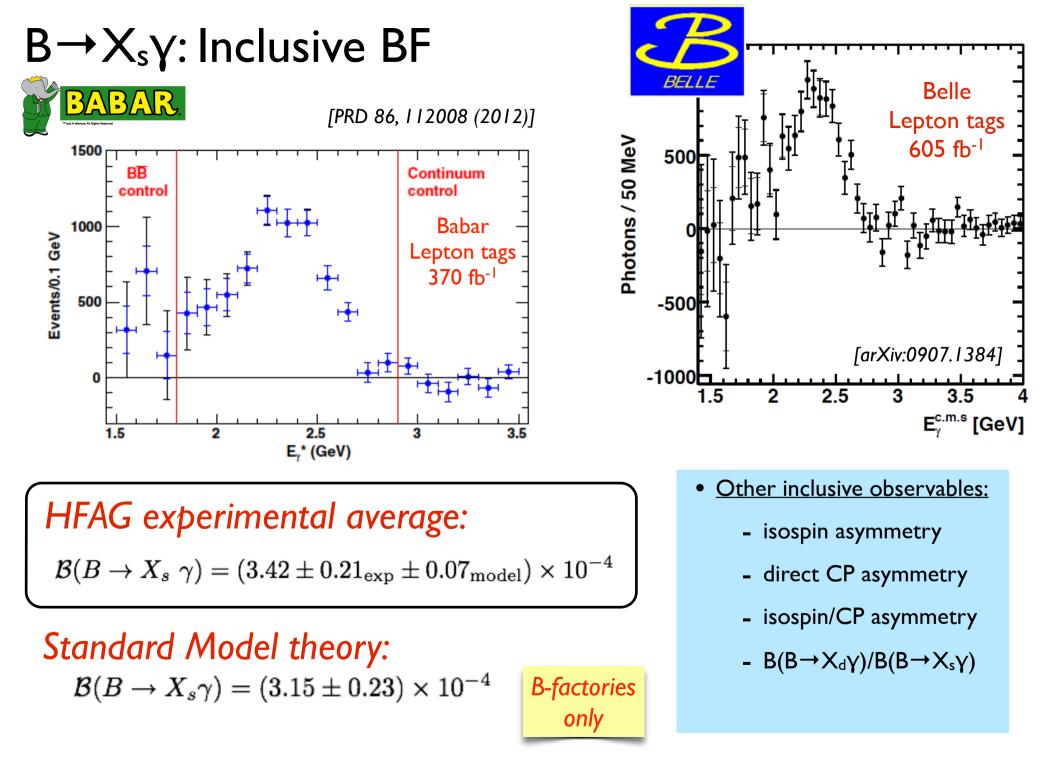



EPS2013: LHCb/CMS joint discovery of $B_s \rightarrow \mu^+\mu^-$

LHCb: arXiv:1307.5024, PRL.111.101805 (2013)

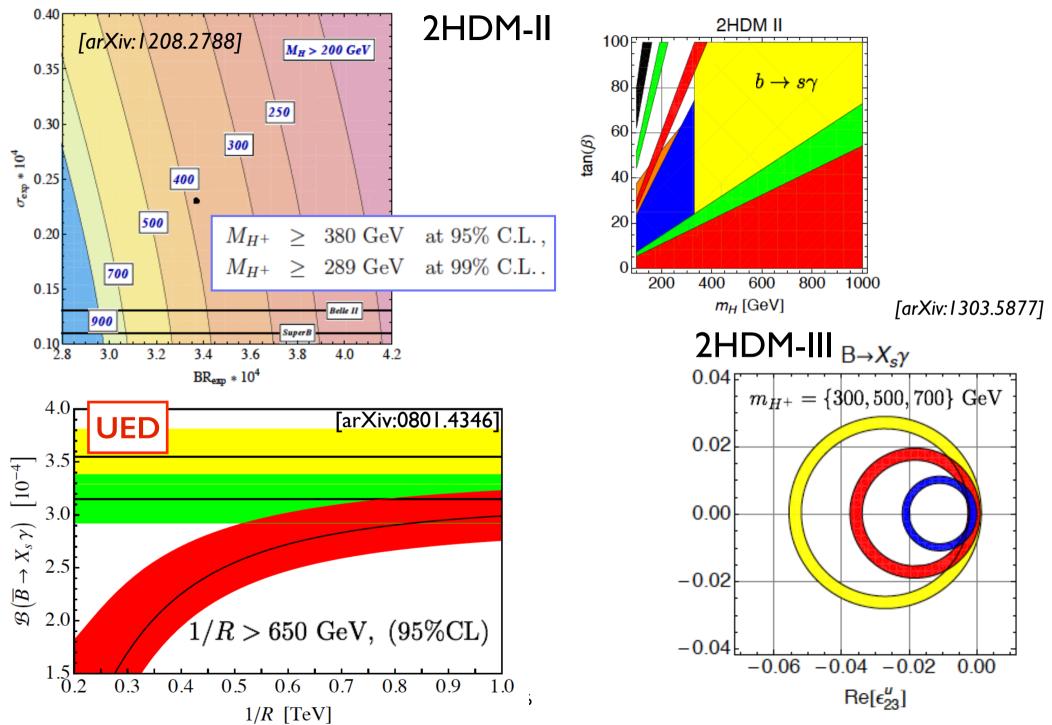

$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	=	$(2.9^{+1.1}_{-1.0}) \times 10^{-9}$,	> 4.00
$\mathcal{B}(B^0 \to \mu^+ \mu^-)$	=	$(3.7^{+2.4}_{-2.1}) \times 10^{-10}$	

$B^0/B^0_s \rightarrow \mu\mu$, the golden ratio



$B \rightarrow X_s \gamma$: Inclusive BF: general observations

• SM calculation at NNLO (~10k diagrams) [hep-ph/0609232]. Quite precise (~7%):


 $\mathcal{B}(B \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{ GeV}} = (3.15 \pm 0.23) \times 10^{-4}$

- Very powerful in constraining NP models, historically and still very relevant.
- Inclusive measurement is preferred → allows comparison with precise SM prediction for inclusive rate
- Experimentally challenging:
 - fully inclusive: large irreducible background from $B \rightarrow X \pi^0 (\rightarrow \gamma \gamma)$
 - sum-of-exclusive technique: problem of missing channels
- Current status of uncertainties: comparable statistical and systematic errors
 - but a large fraction of systematic error is statistical in nature (for some measurements)

LTS1, Elba, 22/5/2014

$B \rightarrow X_s \gamma$: Inclusive $BF \rightarrow$ contraints

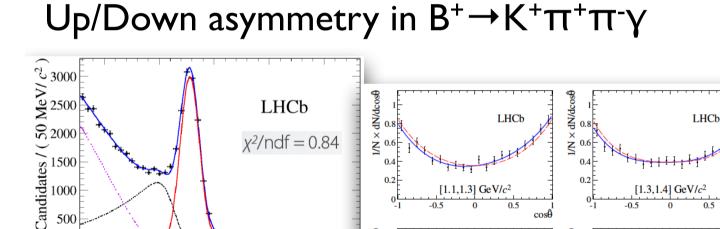
$B \rightarrow X_s \gamma$: Exclusive modes

- Generally, larger theoretical uncertainties make exclusive decays less useful
- Exception: where one can access photon polarization \rightarrow looking for NP in LeftRight models

[1.1,1.3] GeV/c2

[1.4,1.6] GeV/c2

0


0.5

LHCb

0.5

-0.5

-0.5

₹ ^{0.6}

 $1/N \times dN/dcos\theta$ 8.0 8.0 8.0 9.0 9.0 1

0.4

 χ^2 /ndf = 0.84

6000

M(K $\pi\pi\gamma$) [MeV/ c^{2}

6500

 Non-zero up/down asymmetry determined at 5.2σ

 \vec{p}_2

 \vec{p}_3

 $\vec{n} = \vec{p_1} x \vec{p_2}$

$$\mathcal{A}_{ud} = C\lambda_{\gamma}$$

• Full amplitude analysis or theory progress needed to determine photon polariziation.

 $\mathcal{A}_{\mathrm{ud}}$ 6.9 ± 1.7 4.9 ± 2.0 $5.6 \pm 1.8 - 4.5 \pm 1.9$

5000

5500

0

4500

cosθ

Ś

 $\times \frac{1}{1000}$

Ł

[1.3,1.4] GeV/c2

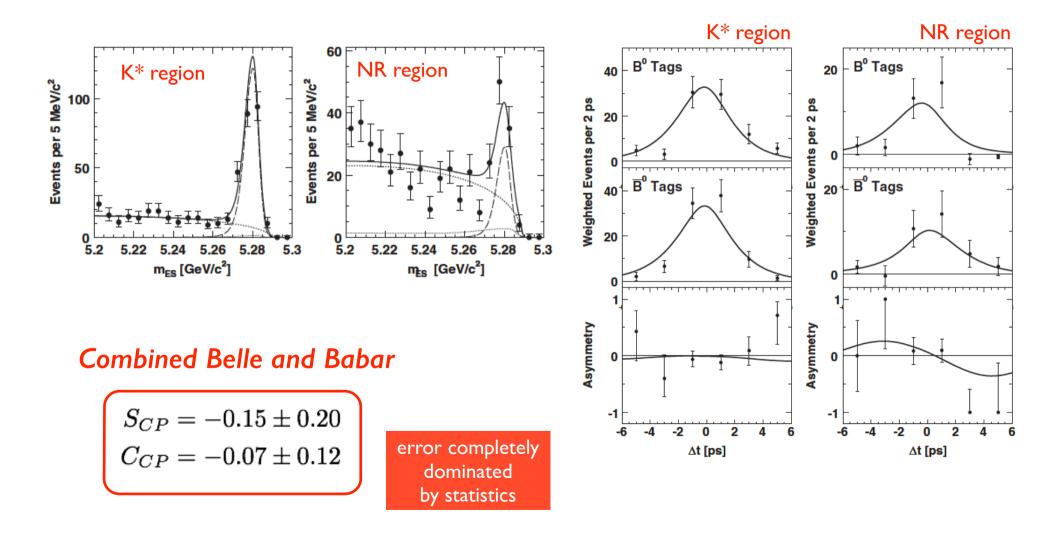
[1.6,1.9] GeV/c2

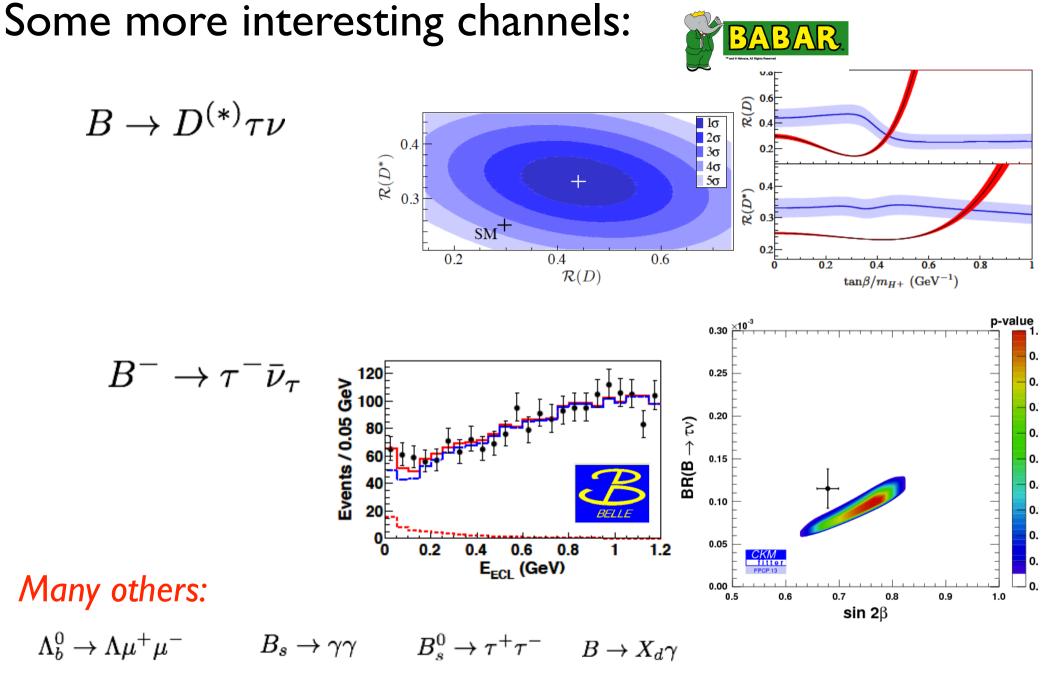
0 5

LHCb

0.5

cosô


-0.5


-0.5

$B \rightarrow X_s \gamma$: Exclusive modes

• Another approach to photon polarization: time-dependent CP violation measurement in $B^0 \rightarrow K_s^0 \pi^0 \gamma$

 $B^+ \to \pi^+ \mu^+ \mu^- \qquad B_s \to \phi \gamma \qquad etc.$

Projections: LHCb

Integrated luminosity							
	LHC era			HL-LHC era			
Ć	Run 1	Run 2	$\operatorname{Run} 3$	$\operatorname{Run} 4$	Run 5+		
	(2010-12)	(2015 - 17)	(2019 - 21)	(2024 - 26)	(2028 - 30 +)		
	$3{ m fb}^{-1}$	$8{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$46{\rm fb}^{-1}$	$100 {\rm fb}^{-1}$		
	LHC era			HL-LHC era			
	Run 1	Run 2	Run 3	Run 4	Run $5+$		
$\phi_s(B^0_s \to J/\psi\phi)$	0.05	0.025	0.013	0.009	0.006		
$\phi_s(B^0_s \to \phi\phi)$	0.18	0.12	0.04	0.026	0.017		
$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	220%	110%	60%	40%	28%		
$q_0^2 A_{\rm FB}(K^{*0}\mu^+\mu^-)$	10%	5%	2.8%	1.9%	1.3%		
γ	7°	4°	1.7°	i.i°	0.7		
$A_{\Gamma}(D^0 \to K^+ K^-)$	$3.4 imes 10^{-4}$	2.2×10^{-4}	$0.9 imes 10^{-4}$	$0.5 imes 10^{-4}$	$0.3 imes 10^{-4}$		

- Projections are probably optimistic: use as a rough guide, not as gospel truth
- Point of departure for discussion

 Exclusive modes (mostly with muons, charged final state)

$$B_s \to \mu^+ \mu^-$$
$$B^0 \to \mu^+ \mu^-$$
$$B \to K^{(*)} \mu^+ \mu^-$$

• Some exclusive radiative decays

Е

$$B_s^0 \to \phi \gamma \\ B^+ \to K^+ \pi^- \pi^+ \pi^- \gamma$$

Projections: Belle-II

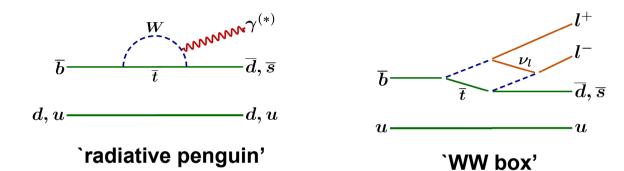
i i ojec			2019	2023
	Observables	Belle	Bell	
	Observables	(2014)	5 ab ⁻¹	50 ab ⁻¹
UT angles	$\sin 2\beta$ α [°] γ [°]	$0.667 \pm 0.023 \pm 0.012$ [64] 85 ± 4 (Belle+BaBar) [24] 68 ± 14 [13]	0.012 2 6	0.008 1 1.5
Gluonic penguins	$\begin{split} S(B &\to \phi K^0) \\ S(B &\to \eta' K^0) \\ S(B &\to K^0_S K^0_S K^0_S) \\ \mathcal{A}(B &\to K^0 \pi^0) \end{split}$	$\begin{array}{l} 0.90\substack{+0.09\\-0.19} & [19] \\ 0.68 \pm 0.07 \pm 0.03 & [65] \\ 0.30 \pm 0.32 \pm 0.08 & [17] \\ -0.05 \pm 0.14 \pm 0.05 & [66] \end{array}$	0.053 0.028 0.100 0.07	0.018 0.011 0.033 0.04
UT sides	$\begin{array}{l} V_{cb} \mbox{ incl.} \\ V_{cb} \mbox{ excl.} \\ V_{ub} \mbox{ incl.} \\ V_{ub} \mbox{ excl. (had. tag.)} \end{array}$	$\begin{array}{l} 41.6 \cdot 10^{-3} (1 \pm 1.8\%) \ [8] \\ 37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.}) \ [10] \\ 4.47 \cdot 10^{-3} (1 \pm 6.0\%_{ex.} \pm 2.5\%_{th.}) \ [5] \\ 3.52 \cdot 10^{-3} (1 \pm 8.2\%) \ [7] \end{array}$	1.2% 1.8% 3.4% 4.7%	1.4% 3.0% 2.4%
Missing E decays	$ \begin{array}{l} \mathcal{B}(B \rightarrow \tau \nu) \ [10^{-6}] \\ \mathcal{B}(B \rightarrow \mu \nu) \ [10^{-6}] \\ R(B \rightarrow D \tau \nu) \\ R(B \rightarrow D^* \tau \nu)^{\dagger} \\ \mathcal{B}(B \rightarrow K^{*+} \nu \overline{\nu}) \ [10^{-6}] \\ \mathcal{B}(B \rightarrow K^+ \nu \overline{\nu}) \ [10^{-6}] \end{array} $	96(1 ± 27%) [26] < 1.7 [67] 0.440(1 ± 16.5%) [29] [†] 0.332(1 ± 9.0%) [29] [†] < 40 [30] < 55 [30]	10% 20% 5.2% 2.9% < 15 < 21	3% 7% 2.5% 1.6% 30% 30%
Rad. & EW penguins	$\begin{array}{l} A_{CP}(B \rightarrow X_{s,d}\gamma) \ [10^{-2}] \\ S(B \rightarrow K^0_S \pi^0 \gamma) \end{array}$	$-0.10 \pm 0.31 \pm 0.07$ [20] $-0.83 \pm 0.65 \pm 0.18$ [21]	7% 1 0.11 0.23 10% 0.3 < 2 [44]‡	6% 0.5 0.035 0.07 5% - -

- **Projections are probably optimistic: use** as a rough guide, not as gospel truth
- Point of departure for discussion LTSI, Elba, 22/5/2014

- **Inclusive processes** $B \to X_s \ell^+ \ell^ B \to X_s \gamma$
- Modes with neutrinos

$$B \to \tau \nu$$
$$B \to \mu \nu$$
$$B \to D^{(*)} \tau \nu$$

Specific modes with neutrals


$$B o K_S \pi^0 \gamma$$

Backup slides

Introduction/Motivations

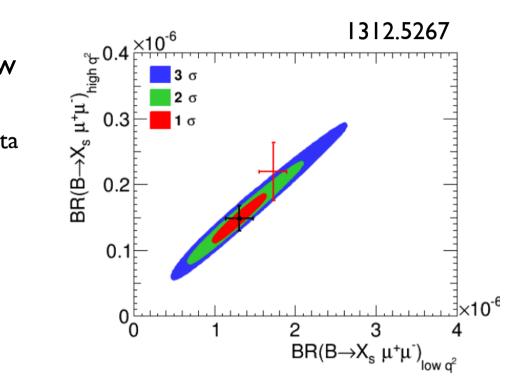
 Flavour-changing neutral current process: prohibited at tree level in the Standard Model → New Physics contributions enter at same order as SM physics

- In many NP models, the SM particles in the loops are replaced by new heavy particles, new masses, new couplings
 - \rightarrow modify quantities that we can measure
 - Branching Fractions, CP and Isospin asymmetries, observables from angular distributions

Effective Hamiltonian

• Effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} [C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu)],$$

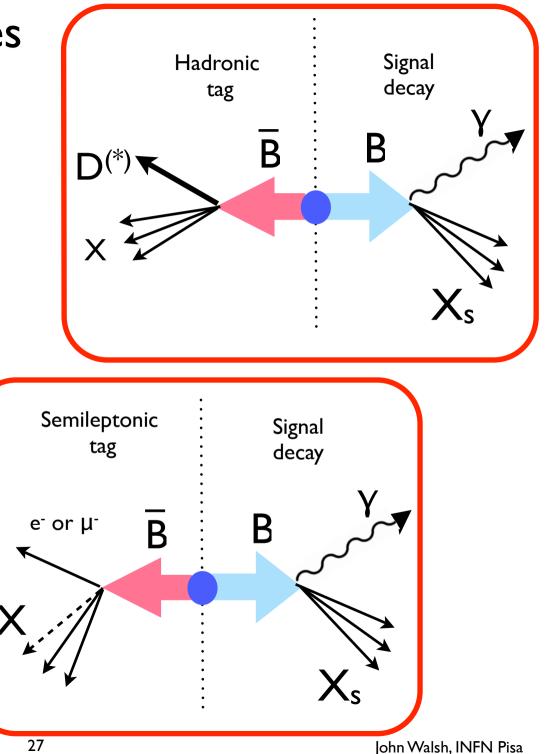

• Relevant operators for this physics:

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s}\sigma_{\mu\nu}P_{R}b) F^{\mu\nu}, \quad \mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b) (\bar{l}\gamma^{\mu}l), \quad \mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b) (\bar{l}\gamma^{\mu}\gamma_{5}l),$$

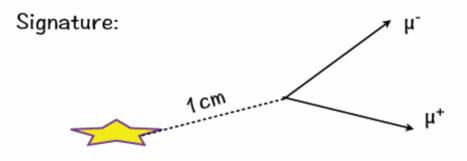
- The *C_i* are the Wilson coefficients, which are calculable perturbatively in SM and NP models
- C₇: coefficient of dipole operator. $|C_7|$ determined by $B(B \rightarrow X_s \gamma)$
- C₇, C₉, C₁₀ all affected by $B \rightarrow X_s l^+ l^-$

Inclusive $B \rightarrow X_s l^+ l^-$ can help...

- Inclusive BF of $B \rightarrow X_s I^+I^-$ also depends on C_9
- Plot BF in high q² region vs. BF in low q² region
 - Colored ellipses: from global fit to K*II data
 - Red cross: SM calculation
 - Black cross: central value of global fit but error bars from expected results from current B-factories

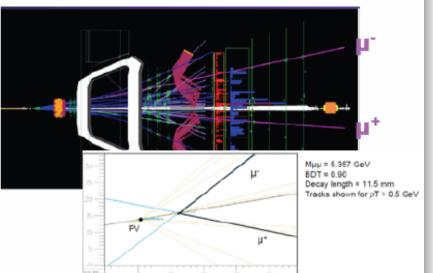


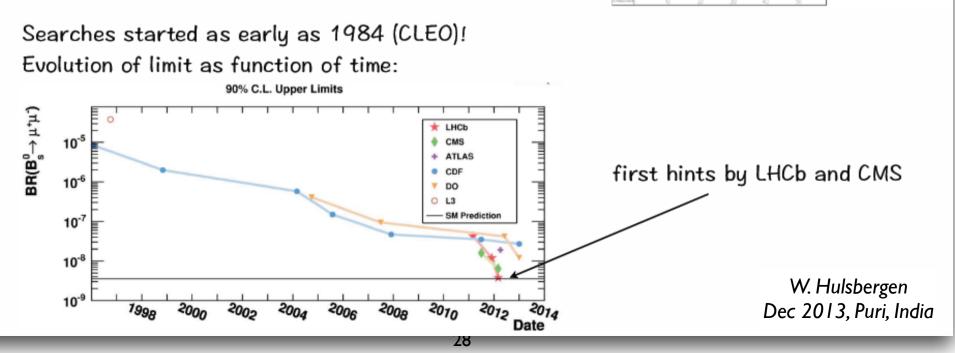
$B \rightarrow X_s I^+I^-$: General characteristics

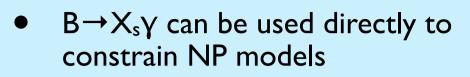

- Lepton pair in final state offers many more observables (compared to $B \rightarrow X_s \gamma$, for example)
- Theory predicts observables as function of $q^2 \equiv m_{\ell\ell}^2$, so experiment aims to measure as function of $q^2 \rightarrow$ strong tool for revealing NP
- Very small BF: ~ $1.5 \times 10^{-6} \rightarrow$ need high statistics
- Most exp. focus has been on exclusive states: $B \rightarrow K^{(*)}I^+I^-k$
- Inclusive measurements will be valuable in the future:
 - theoretical calculations under good control
 - only at e⁺e⁻ machines: Belle-II

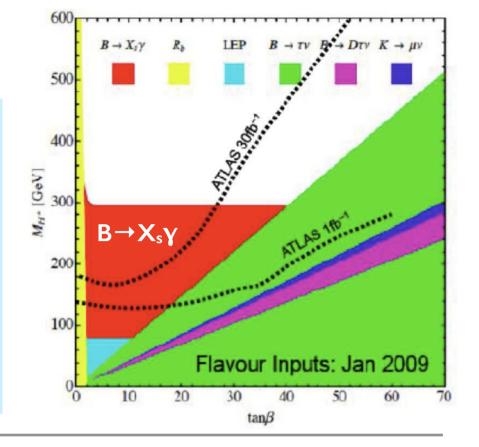
$B \rightarrow X_s \gamma$: Tagging strategies

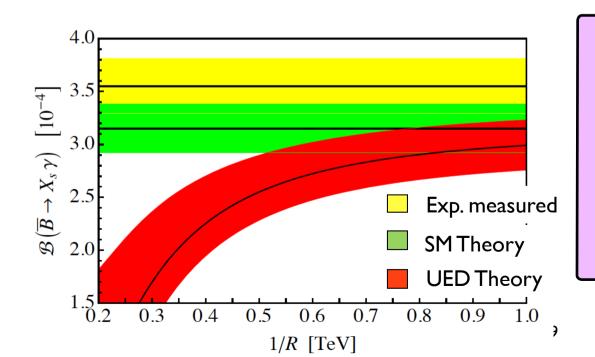
- Requiring tag on "other B" in event can greatly reduce background
- **Fully-reconstructed** hadronic decay is most powerful but low efficiency ($\sim 0.5\%$)
- High-p lepton with missing E_T selects semileptonic B decays, reducing continuum background significantly, with eff $\sim 10\%$

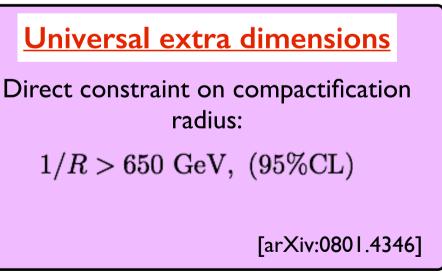



The quest for $B_q -> \mu \mu$


Complicated measurement: large backgrounds from B->hh and double B->X $\!\mu$

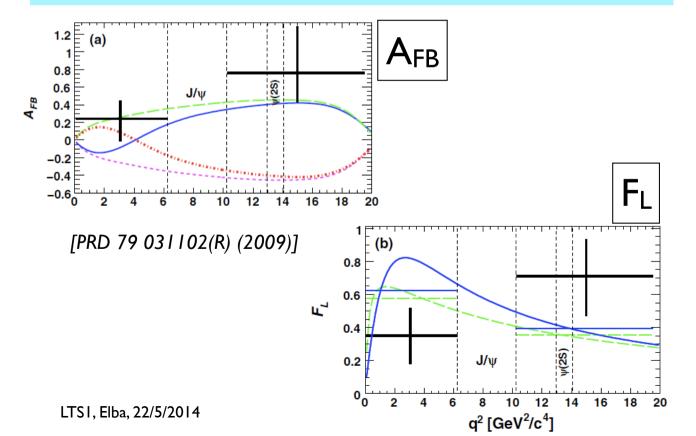


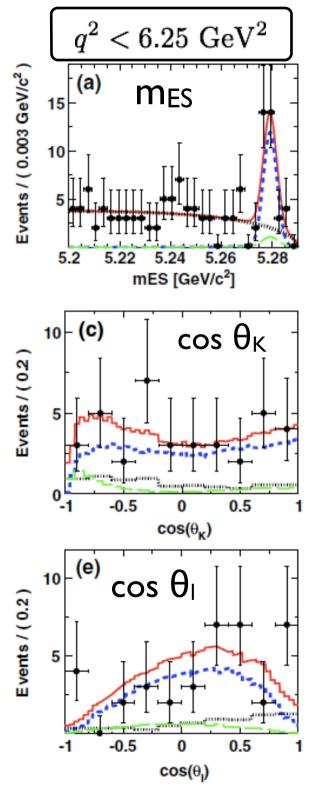

$B \rightarrow X_s \gamma$: NP Constraints



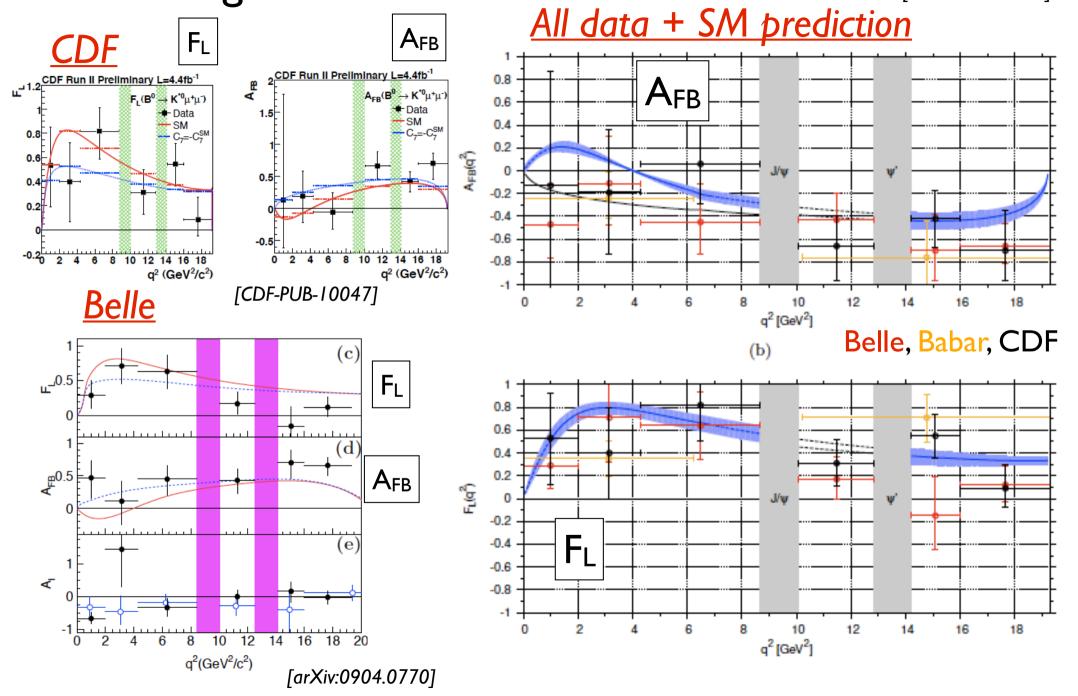
- Two Higgs doublet model (type 2)
- Independent of tan' $\beta^{m_{H^+} > 295 \text{ GeV}}$, $\beta^{(95\%\text{CL})}$

[arXiv:1104.5123]



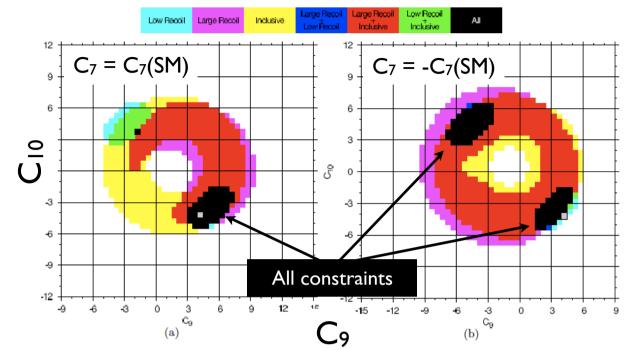


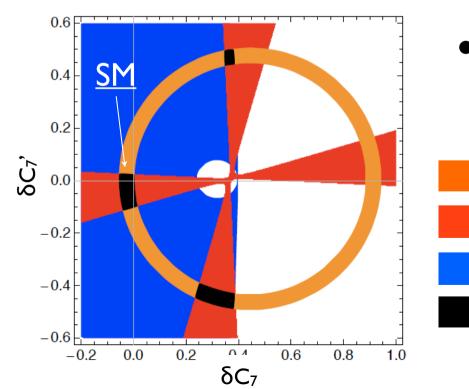
$B \rightarrow K^{(*)}II: Experimental analysis$


- Reconstruct $10 \text{ B} \rightarrow \text{K}(*)$ ll states:
 - K^+ , K_s^0 , $K^+\pi^-$, $K^+\pi^0$, $K_s^0\pi^+$ with e^+e^- ($p_e>0.3$ GeV) or $\mu^+\mu^-$ ($p_\mu>0.7$ GeV)
- Good PID for e, μ , K, π , K_s⁰ \rightarrow $\pi^+\pi^-$
- Neural net classifiers to suppress background from double semileptonic B and D decays
- Kinematical variables, m_{ES} and ΔE
- Veto charmonium events \rightarrow control sample

Combining results:

[arXiv:1006.5013]


LTSI, Elba, 22/5/2014


John Walsh, INFN Pisa

Constraining Wilson coefficients

- C₁₀ vs. C₉ plane
- Use exclusive and inclusive $B \rightarrow X_s l^+ l^-$ data
- Two cases: $C_7 = C_7(SM)$ and $C_7 = -C_7(SM)$

[arXiv:1006.5013]

• δC_7 ' vs δC_7 plane: variations from SM prediction

[arXiv:1104.3342]

 $\mathcal{B}(B \to X_s \gamma)$

 $A_I(B \to K^* \gamma)$

 $S_{K^*\gamma}$

All