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QCD radiation violates Feynman
scaling at high energies

But, even when assuming Feynman
scaling, the possibility of creating
more strings in MPI gives rise of
p(0) stronger than In(s)

< p7> is expected energy
independent for soft processes

for hard scale the rise is due to
— production of jets in hard

Models with MPI do the
best job in central region
(even if they ~fail forward)
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MC/data

tracks, UE>(GeV/c)
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MC/data

charged energy in/out track-jet definition
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s Transverse Sphericity

Px;
pyi Px

pXipgyi
Py;

1 1
—ijTijTi

0 jetty events
| isotropic events

Average Transverse Sphericity grows with N, as
expected.

The large multiplicity events are less “jetty” than
expected: no model reproduces the ALICE
observations for N, > 30

Large multiplicity: Sphericity correlated to Nyp,

may provide additional handles to study large multiplicity
features

[G.Paic, MPI@LHC 2013, Antwerpen]
See also arXiv:1404.2372
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Chs Section | - multiplicities

MPI model:
Energy evolution in p(0) and <p;>, KNO scaling violation, event shape...

Jet constituents...

High multiplicity events turn out to be less jetty than predicted, they can be regarded as
the result of several MPI

This is also confirmed by the Transverse Sphericity analysis.

The high multiplicity events are not driven by the leading interaction, they are rather due to
large MPI multiplicities ? Best data/model agreement if MPI+CR

not shown:

dN,/dn shapes and <pT> vs Nch normalization favor implementation of color
reconnections in MPl models

Barion/meson ratios vs p in pp interactions are know to scale with vs /s.A first look
to their N, dependence in the context of pPQCD MPI reveal sensitivity to color
reconnections with qualitative flow-like patterns.




s Section | - multiplicities

Several indications of the role played by MPI
focussed investigations needed

The MPI@QLHC forum is a consequence of a series of WS
[Perugia 2008, Glasgow 2010, DESY 2011, CERN 2012, Antwerpen 201 3, Krakow 2014] aiming to:

Bring Exp and Theo communities on the same topic
Setup a characterization program for LHC

Soft MPl phenomenology — Underlying Event
Hard MPI phenomenology = Double Parton Scattering




S Section 2 - Underlying Event e &
Leading Track Leading Track Jet L/ '

direction direction
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energy density 900 GeV - Eur.Phys.].C70:555-572,2010
7 TeV - JHEP09 (201 1) 109
Observables can be defined using A correlations relative to main activity

Transverse region is expected to be sensitive to the UE




e The transverse region - jet events
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+ Hard energy scale ( 81 < M, < 101 GeV/c?): no fast rise

+ scale > 10 GeV/c DY events have a smaller particle density with a harder pt due to the

presence of only ISR initiated by quarks

+ Hadronic events have both initial and final state radiation predominantly initiated by gluons.

hep-ex:1204.141 1|




CMs Section 2 - soft MPI

Two scale picture (rise at low pt + plateau) in the case of jet events:

Interpretation: peripheral + central collisions (high pt jets) hence large MPI
multiplicity

Single scale picture (plateau) in the case of DY

Interpretation: DY events select more central collisions hence large MPI
multiplicity.

MPI+GPDF analysis also explains UE(DY)/UE(jets)

Connection to <p*>, / <p?>_

[see backup for a detailed interpretation based on transverse nucleon structure]




s Section 3 - Double Parton Scattering

Double high P; interactions observed 30 years ago by AFS, UA2 in 4jets topologies
20-10 years ago CDF and DO used also 3jet +Y

p

O(A+B) = m * 0(A) * 0(B) / O 1

(m = "> for identical interactions, m = | otherwise) - P(B|A) = P(B) * (O non.pifractive! Oeft) Oeff — f dQBFQ (6)
naive prediction: 0 = |/TTR 2 = 60 mb (3+6 times higher than data)

o =~ (process,) scale and /s independent [D. Treleani et al., very rich bibliography]
O mostly depends on geometry

O.s =~ 34 mb considering 4 = 4 processes [M. Strikman et al.]
3 in 4 processes give significant contributions, rising with xg;, ., [B.Blok, MPIQLHC 2013]

Pythia 6 and Pythia 8: O'eff - O-Non-Diffractive / <fimpact> ~ 20-30 mb

where <f___ > [enhancement central/peripheral] is tune dependent - soft MPI tunes: 04 =~ 20+30 mb

impact

14




Ms - WH2j (CMS) - Double Parton Scattering

~i

Measured di-jet x-section

Measured Ratio between

W+2jets and W+0jets x-sections | ~— —————

Ueff =

(RS e 2on
[S.Bansal, 5t" MPI@LHC, Antwerp ggg’n?ber 2013]

2 40 —a-CMS (W - 2jets)
— _ =% ATLAS (W + 2 jets)
g 35- CDF {4 jets)
- == CDF {7 + 3 jets)
— —— F jets
measured 04 =~ 10+20 mb 300 gg';fcf%‘jgtso) {r + 3jets)
; - = UAZ (4 jets - lower limit)
(lower at Tevatron, higher from LHC) 25" AFS (4 ]ots - no errors given)
from previous slide, prediction based on soft MPI 20~ |
tune is = 20+60 mb :
15— J]
DPS underestimated in the models tuned on Soft 10- I {

QCD phenomenology?

What are the relationships between “soft” and

“hard” MPIl measurements!?
Which role for parton correlations ?

'

004 01 02

arXiv:1312.5729.

1 2 345 10
Vs [TeVl




s Introduction to Double Parton Scattering

hadronic:
Opps (4jets@ 100 GeV) = Y2 * (O (2iet5))2/0eff= V2 * (I ub)2/creff =510 ub =50 pb

apply extra |% factor for each b-jet pair requirement

Opps (2Y+2jets@20 GeV) = /2 * (0 (y+je)o,, = 2 * (0.1 pb)40__ = 5 107 pb = 0.5 pb

hadronic - incoming/future:
Opps (W DUV, WEDNY) = 2 * (0 (WEDUV))Y o = /o (20nb)2/0eff =210°nb=20fb

half of which (10 fb) corresponds to same sign muons

Oops (ZPUH, ZDU) = V2 * (O (ZDUW)YO,, = 4 * (2nb)YC__ =2 107 nb = 0.2 fb

heavy flavor final-state:

oW =51 +- 1.0 (stat) +- I.I (syst) nb

(20% higher than the SPS predictions. contribution from DPS? SPS contribution suppressed
at large Ay)

heavy flavor final-state - incoming/future:
[W+prompt J/Y - hint for DPS contribution higher than assumption]

[Z+D - DPS higher than SPS]




cmMs same sigh Ws - Double Parton Scattering
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p-Pb 8.8 TeV enhancement
DPS/SPS separation largely increased:

DPS~300 pb
SPS~100 pb

Oeﬁ,pp/Oeﬁ,pA = 600




s p-N - Double Parton Scattering

[D.Treleani, MPI@LHC 2013, Antwerpen] - Arxiv:1309.6201

Additional information on 04 from MPI correlations are
expected in p-N collisions

effects of longitudinal and transverse correlations are in
fact different when a single nucleon or both target
nucleons participate in the hard process.

The simplest case: W+2j in p-Pb: experimentally easy to detect

+ interference term absent (using the lepton from W)

+ strong anti-shadowing correction: — 71—
|)proportional to MPI multiplicity and 80 PDF MSTW, @ATLAS, Il <0.2 |
2)weakly depending on transverse correlation — :g:*DP' ]

DPI (K*=2) i

1
Teff

AW IT)|, = (2P (W) oBP (1.7) + (A — Z2) (W) (1.0)]

_ short range nuclear correlation
AW IT)|, = K[gagp(W) 4 A AZ og"(ﬁ“')] o () [ £ )

A Z
x [/T(B)WB - 2/p(B.:)2d?Bd: x reC|

anti-shadowing
contribution

nuclear thickness function nuclear density 60
=> growth as A*3 => growth as A r pt [GeV]

Enhanced shoulder at = 40 GeV in pA interactions
18




“  Section 3 - Double Hard Scattering

Corrected distributions for several DPS-sensitive observables
Achieved for 4jets, W+2jets, W+]/V¥, Z+D, double J/¥, double open charm, other channels in progress.

Interpretation, consistency checks
In progress...still no direct DPS evidence. Large systematics on 0.4 model dependency

More processes: study process dependency
In progress, precision of the measurements still doesn’t allow to compare O in g-initiated and g-

initiated processes, comparing with corresponding UE ratios.

Differential distributions
Requires more integrated luminosity: HL-LHC, i.e. FUTURE...

Extension of the DPS measurements to p-Pb
should proceed in parallel, for now we have some nice/promising TH predictions and feasibility

studies

Sensitivity to parton correlations




~s  Section 4 - High multiplicity correlations

Intermediate pT : 1 < p7 <3 GeV/c
High Multiplicity: N>110 High Multiplicity: N>110

(d) N>110, 1.IJEaW~::¢pT-=3.DGGWc (d) N>110, 1 .nGewc-:pT-:B.nGewC

PYTHIA8 .- ) __
q 2{ .- \ q 6 o AN
= 4 = ’t}%‘ﬁ" fﬁf’*ﬁl‘;‘.ﬁ %
4

A M

Observation of a Long-Range, Near-Side angular correlations at high multiplicity in
pp events at intermediate pT (Ridge at A¢p~0)

not reproduced by actual models
20




CMS

High multiplicity correlations

A similar feature observed at RHIC (AuAu 200 GeV). Interpreted as
hot and dense matter formed in relativistic heavy ion collisions

ALICE: reported same structure
in p-Pb collisions (5.02 TeV)

2 < Pryig <4 GeVic

12<pr'mg <426(:V\/’7 p-Pb s, = 5.02 TeV 1< Prassoc < 2 GeV/c
< < ev/c - L]
Prossce S s 20% highest multiplicity
AN
(zoomed) Near-side jet

\\

Away-side jet
" (A ~ m, elongated in An)

Near-side ridge
(A ~ 0, elongated in An)

i

A® \rad\ Correlation profile for lower
multiplicity (60-100%) is
subtracted from the one for
21 higher (20% highest)




“*  Possible interpretations (elliptic flow a part) L@?

MPI model does not take into account angular momentum conservation

The number of MPI is regularized by the IP, but the azimuth of the scattering plane is chosen
randomly for each MPl = no long-range near-side angular correlations in PYTHIA

With a impact-parameter dependent smearing: |
i = Onardest + Gauss(p = 0,0 = 1) arctan(by,, /b)

1<pT<3GeV,alN 1<pT<3GeV,N>90
" Such a correlation can be
naturally explained in a physical
picture based on the impact
parameter between the protons

R(An.0p)

Warnings:

Azimuthal correlation of MPlIs
was studied experimentally at
Tevatron but no evidence was
observed

22




‘s Correlation modeling in a

9

9

X

Constituent Quark Model

In a potential model, effective particles
are strongly bound and correlated.

No modifications of the model properties
are necessary to describe correlations

S.Scopetta et al. - PRD 87, 114021 (2013)

¢ o
G.

In this sense, CQM are a proper framework to describe DPCs BUT their
predictions are reliable in the valence region, while LHC data, for the moment, are
available only for much lower values of Bjorken x

At very low z, due to the large population of partons, the role of correlations may
be less relevant BUT there is no quantitative theoretical estimate available
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‘s Correlation modeling in a
Constituent Quark Model

In principle, correlations are there

o

We are not alone in addressing this issue

(see Markus’ and almost all the other talks. Many published papers: Korotkikh and
Snigirev (2004), Gaunt and Stirling (2010), Diehl and Schafer (2011), Snigirev
(2011), Blok et al. (2012), Schweitzer, Strikman and Weiss (2013)...)

® DPCs cannot be studied from first principles:
dPDFs are non-perturbative quantities

B Our contribution: a quark model analysis as a possible useful tool
The Isgur-Karl model
IK is a suitable framework for a first CQM calculation of DPCs:

O Kisthe prototype of any other CQM; low energy properties of the nucleon, such
as the spectrum and the electromagnetic form factors at small momentum transfer

are reproduced;

B  Gross features of the standard PDFs are reproduced.

The model results correspond to a low momentum scale (hadronic scale, p2). There are
only valence quarks: the scale has to be very low ( u, ~0.300 GeV according to NLO
pQCD). Data are taken at a high momentum scale ¢. QCD evolution needed!
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“s  Correlation modeling in a
Constituent Quark Model

’fﬂ(xmxz)

?";(XW VXZ)

2uug(x1,x2,k ] =0)
ug(z1)ug(x2)

(a)

(b)

where:

rg(z1,r2) =

1) the dPDF depends on a parameter :

o - N W~ U
o = N W > O
A

3/2
wug (a1, z2, ki = 0) = 2827 [ dkdk

e + + 1
o—2(k2+k2+ R Ea) /a2 5 (xl N ’“_+) 5 (:m _ ’i) 7
P rﬂ<><1 z)

rﬁ(xmxz) (d)

2) the corresponding PDF is:

(0
i
\“‘t“‘? ?‘
&3 3\‘8\‘8\

\\
N (4_B)3/2 — —
— — +
o—2(k2+k2 46K -F2)/a? 5 (xz _ K ) ,

QO = N W s~
a - N W >
N

P+

a) = 0: uncorrelated scenario; b) 5 = 0.25;c) 3 =
d) 8 = 1: the correlated HO framework

Huge effect! May be the real situation is somewhere in between (a) and (d)...
We have to improve the model...

Recent developments using LF RHD (work in preparation)
* A covariant approach with on-shell constituents
* Correct support (important for QCD evolution)
* . . .
Proper framework for spin correlations and low-x model calculations
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oM Section 4 - Correlations

nificant ridge structures are observed in high multiplicity pp (+/s = 2.76 and 7 TeV), p-Pb
(\%SNN = 5.02 TeV) and Pb-Pb (v/sy = 2.76 TeV) collisions

Pb-Pb: expected from the elliptic flow
p-Pb and pp observations still miss an agreed interpretation

Interpretation: Large multiplicities without pronounced jetty structures point to an
important role played by Multiple Parton Interactions

Angular momentum conservation?

Color reconnections!?

Multi-Phase Transport Model (AMPT) is successful relies on pQCD MPI for the
description of the initial state

Explore the full potential (“3D correlations” from p-N collisions)

CQM.:
Can one analyze dPDFs @ LHC kinematics (very low x, high momentum scale)
within relativistic quark models (whose predictions are initially valid in the valence region) ?

[Tools: QCD evolution of dPDFs;inclusion of higher Fock space components in addition to the
valence one]
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CMs soft&hard MPI - energy scale

Z(uu)+Z(uu)
~0.1fb

>

W(uv)+W(uv)

W(uv)+HF  Z(uw)+HF

bb+jj v+3]
4j W(uv)+jj  Z(uu)+ij
Double J/W W(uv)+l/W
Soft (Minimum Bias) j+UE W+UE Z(uu)+UE

Scale of secondary scatter(s)

=~ 100 mb

>

Scale of primary scatter
LHC measurements available Complement with
LHC measurements not yet available p-A and A-A
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s Conclusions/Highlights

Multiple Parton Interactions have been introduced to solve the unitarity problem
generated by the fast raise of the inclusive hard cross sections at small x

MPI are an instruments to probe proton matter distribution, understand the collision
dynamics and define at the best a unexpected background to new physics search

Past experiments indicating Double Parton Scattering suggested the extension of the same
perturbative picture to the soft regime, giving rise to the first implementation of the MPI
processes in a pQCD Monte Carlo model (T.Sjostrand and M.van Zijl). Such model turned out to
be successful in reproducing the charged multiplicity distributions and Koba Nielsen Olesen
(KNO) scaling violation

The critical kinematical regime of MPl may be identified by comparing the rate of double collisions
with the rate of single collisions.VWhen the two rates become comparable multiple collisions are
no longer a small perturbation and all multiple collisions become equally
important, while the production of hard partons becomes a common feature of the inelastic event.

Several observations don’t have a straightforward interpretation with independent interactions,
i.e. increasing <pT> vs Nch. A large amount of colour reconnections recover, but is this the
correct interpretation? Correlations ? And, if so, what is the physics and what are the rules
that govern colour reconnection? To what extent can colour reconnection affect observables like
the meson/barion ratios that can be attributed to effects dealing with transport in dense matter?




M Conclusions/Highlights

The status of the art of Multiple Parton Interactions needs to be reviewed in the light of the recent
LHC measurements on both hard and soft MPI.

The MPI@QLHC workshop, started in 2008 in Perugia, today at the 6th edition, is providing a common
theo/exp platform for MPI understanding.

Hard-MPIl measurement still don’t provide a crystal clear DPS evidence.

Following the observation of long-range ridge-like structure in high multiplicity events, soft MPI
measurements at the LHC focused on the detailed investigation of large multiplicity events
(sphericity, jets...): these events are less jetty than predicted by the models.

What should be considered to be the most striking evidence of MPI via DPS?

And what are the features of large multiplicity production?

To what extent we can trust the general-purpose pQCD MPI models!?

Explore scaling properties: observables in pp, pPb and PbPb driven by charged multiplicity?

What role is played by correlations ?

Higher Energies...higher luminosities...
1) DPS/SPS Heavy Flavors production is expected to increase with +/S (experimental challenging ?)
2) Rare productions with top and heavy bosons, unavoidable BGs to new physics searches

3) proton-Nuclei interactions, DPS enhanced, longitudinal correlations, help the 3D definition of 0




CMS

backup




s Multiplicities and KNO scaling

KNO (Koba-Nielsen-Olesen) Scaling is not a consequence of Feynman scaling, but of hadrons
produced by the self-similar branching of a single string

Strong KNO scaling violation in intermediate-range of pseudorapidity intervals is an
indication of MPI

N (@
T E Interpretation of UA5 540 GeV data:
ol ) T. Sjostrand and M. van Zijl, Phys. Rev.
: D36(1987) 2019
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s Transverse activity interpretation

M. Strikman et al. - “Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC”
[Phys. Rev. D83 (201 1) 054012]
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i Transverse Energy Flow
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CMs Color Reconnection

Average transv. momentum as function of Ny, (0.9TeV, Ny, > 6)

:: 1.4 +— Read off from ATLAS
—~ 13 Herwig++ 24
. <p;>Vvs N, il [M. Seymour, MPI@LHC 2013, Antwerpen]
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syslomalic uncertairty [G.Paic, MPI@LHC 2013, Antwerpen]
See also arXiv:1404.2372
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s The transverse region - identified particles N

14GX1 03 CMS, pp, Vs =7 TeV x107 CMS, pp, Vs =7 TeV
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Same pattern observed for standard UE measurement, compatible with the IP interpretation
PYTHIA underestimate the data by 15-30% for Ks mesons and by about 50% for A baryons

Deficit similar to that observed for the inclusive strange particle production in pp collisions
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