Nucleon

 Structure theory

Marco Radici

understand the proton

quark-Higgs coupling

$\sim 9 \mathrm{MeV}$

understand the proton

quark-Higgs coupling

99% of proton mass is generated by dynamics of QCD confinement

938 MeV

lattice QCD

Hadron Physics

the Infinite Momentum Frame (IMF)

probe short distances
\Rightarrow Deep-Inelastic (DIS) regime

DIS regime $\mathrm{Q}^{2} \rightarrow \infty$

IMF <=> Light-Cone (LC) kin.

the Infinite Momentum Frame (IMF)

probe short distances
\Rightarrow Deep-Inelastic (DIS) regime

DIS regime $\mathrm{Q}^{2} \rightarrow \infty$

IMF <=> Light-Cone (LC) kin.

all partons \sim collinear go beyond this approx.

main goal
 the 3D-structure of the Nucleon

main goal

the 3D-structure of the Nucleon
mono-dim. info on heart activity

ECG

main goal

the 3D-structure of the Nucleon

mono-dim. info on heart activity

ECG

3-dim. tomography of heart activity
cardio
MR

the proton spin budget?

since EMC (1988, the "spin crisis") we can't yet explain the proton spin in terms of its constituents

OAM = Orbital Angular Momentum

the proton spin budget?

since EMC (1988, the "spin crisis") we can't yet explain the proton spin in terms of its constituents

$$
\begin{array}{ll}
& \text { De Florian et al., } \\
\text { low X } & \text { arXiv:1404.4293 }
\end{array}
$$

valence
we don't even know the gluon helicity
$-0.15 \leqslant \Delta \mathrm{~g} \leqslant 1$

OAM = Orbital Angular Momentum

new tools needed

$$
\begin{gathered}
\bar{u}_{N^{\prime}} \gamma^{+} u_{N} F_{1}(t)+\bar{u}_{N^{\prime}} \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u_{N} F_{2}(t) \\
\text { generalize to m-index operator } \\
\text { the Ji'S SUM rule }
\end{gathered}
$$

$$
J_{z}^{q}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x x\left[H^{q}\left(x, 0,0 ; Q^{2}\right)+E^{q}\left(x, 0,0 ; Q^{2}\right)\right]
$$

total angular momentum

Generalized Parton Distributions
$\operatorname{GPD}\left(x, \xi, \mathrm{t} ; \mathrm{Q}^{2}\right)$

new tools needed

$$
\begin{gathered}
\bar{u}_{N^{\prime}} \gamma^{+} u_{N} F_{1}(t)+\bar{u}_{N^{\prime}} \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u_{N} F_{2}(t) \\
\text { generalize to m-index operator }
\end{gathered} J_{i}=\varepsilon_{i j k}\left(x_{j} T^{0 k}-x_{k} T^{0 j}\right)
$$

$$
J_{z}^{q}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x x\left[H^{q}\left(x, 0,0 ; Q^{2}\right)+E^{q}\left(x, 0,0 ; Q^{2}\right)\right]
$$

total angular momentum of parton q

Generalized Parton Distributions
GPD $\left(x, \xi, t ; Q^{2}\right)$

new tools needed

$$
\begin{gathered}
\bar{u}_{N^{\prime}} \gamma^{+} u_{N} F_{1}(t)+\bar{u}_{N^{\prime}} \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u_{N} F_{2}(t) \\
\text { generalize to m-index operator }
\end{gathered} J_{i=1}^{\text {x. li, p.R.L. 78 (97) 610 }}=\varepsilon_{i j k}\left(x_{j} T^{0 k}-x_{k} T^{0 j}\right)
$$

$$
J_{z}^{q}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x x\left[H^{q}\left(x, 0,0 ; Q^{2}\right)+E^{q}\left(x, 0,0 ; Q^{2}\right)\right]
$$

total angular momentum of parton q

Generalized Parton Distributions GPD $\left(x, \xi, t ; Q^{2}\right)$

$$
t=\left(P^{\prime}-P\right)^{2}=\Delta^{2}
$$

$\xi=\frac{\left(P-P^{\prime}\right)^{+}}{\left(P+P^{\prime}\right)^{+}}$ change in N long. momentum

the GPD

GPD (x, $\left.\xi, \mathrm{t} ; \mathrm{Q}^{2}\right)$

the GPD

GPD (x, $\left.\xi, \mathrm{t} ; \mathrm{Q}^{2}\right)$

the GPD

GPD (x, $\left.\xi, \mathrm{t} ; \mathrm{Q}^{2}\right)$

the GPD

GPD ($\mathrm{x}, \xi, \mathrm{t} ; \mathrm{Q}^{2}$)

$$
\begin{aligned}
& \lim _{\xi, t \rightarrow 0} \operatorname{GPD}(x, \xi, t)=\operatorname{PDF}(x) \\
& H \mathrm{H}(\mathrm{x}, \xi \rightarrow 0, \mathrm{t} \rightarrow 0) \Rightarrow \mathrm{f}_{1} \mathrm{q}(\mathrm{x})
\end{aligned}
$$

not directly accessible (Eq $\rightarrow N$ spin flip) need model extrapolation

$$
J_{z}^{q}=\frac{1}{2} \int d x x\left[H^{q}(x, 0,0)+E^{q}(x, 0,0)\right]
$$

the GPD

GPD ($\mathrm{x}, \xi, \mathrm{t} ; \mathrm{Q}^{2}$)

$$
\begin{aligned}
& \lim _{\xi, t \rightarrow 0} \operatorname{GPD}(x, \xi, t)=P D F(x) \\
& \mathrm{H}^{\mathrm{q}}(\mathrm{x}, \xi \rightarrow 0, \mathrm{t} \rightarrow 0) \Rightarrow \mathrm{f}_{1} \mathrm{q}(\mathrm{x})
\end{aligned}
$$

not directly accessible (Eq $\rightarrow \mathrm{N}$ spin flip) need model extrapolation

$$
\begin{aligned}
J_{z}^{q} & =\frac{1}{2} \int d x x\left[H^{q}(x, 0,0)+E^{q}(x, 0,0)\right] \\
& =\frac{1}{2}\left[A_{2,0}^{q}(0)+B_{2,0}^{q}(0)\right]
\end{aligned}
$$

moments of GPD
Generalized Form Factors calculable on lattice
$A_{1,0}\left(\equiv F_{1}\right), B_{1,0}\left(\equiv F_{2}\right), \quad \mathbf{A}_{\mathbf{2}, 0}, \mathbf{B}_{2,0}, \quad A_{3,0}, A_{3,2} . B_{3,0}, B_{3,2 .}$

\int^{9} results (model) params. of GPD

J^{9} results compare with lattice QCD

\square Goloskokov \& Kroll, EPJ C59 (09) 809
Diehl et al., EPJ C39 (05) 1
Guidal et al., PR D72 (05) 054013
Liuti et al., PRD 84 (11) 034007

LHPC-1, PR D77 (08) 094502
LHPC-2, PR D82 (10) 094502
QCDSF, arXiv:0710.1534
Wakamatsu, EPJ A44 (10) 297
Thomas, PRL 101 (08) 102003
Thomas, INT 2012 workshop

tomography of the Nucleon

GPD limit : $\quad \xi \rightarrow 0 \quad\left(\mathrm{P}^{+}=\mathrm{P}^{\prime+}\right) ; \quad \mathrm{t} \rightarrow-\left(\mathbf{P}_{\perp}^{\prime}-\mathbf{P}_{\perp}\right)^{2}=-\mathbf{q}^{2}$

$$
q(x, \mathbf{b})=\int \frac{d \mathbf{q}}{(2 \pi)^{2}} e^{i \mathbf{q} \cdot \mathbf{b}} H\left(x, 0, t=-\mathbf{q}^{2}\right)
$$

$\mathrm{q}(\mathrm{x}, \mathbf{b})$ is a density in $\mathbf{b} \leftrightarrow \mathbf{q}=\mathbf{P}^{\prime}{ }_{\perp}-\mathbf{P}_{\perp}$

\# density of partons with momentum x and position \mathbf{b} tomography of N

tomography of the Nucleon

GPD limit: $\quad \xi \rightarrow 0 \quad\left(\mathrm{P}^{+}=\mathrm{P}^{\prime+}\right) ; \quad \mathrm{t} \rightarrow-\left(\mathbf{P}_{\perp}^{\prime}-\mathbf{P}_{\perp}\right)^{2}=-\mathbf{q}^{2}$

$$
q(x, \mathbf{b})=\int \frac{d \mathbf{q}}{(2 \pi)^{2}} e^{i \mathbf{q} \cdot \mathbf{b}} H\left(x, 0, t=-\mathbf{q}^{2}\right)
$$

$\mathrm{q}(\mathrm{x}, \mathbf{b})$ is a density in $\mathbf{b} \leftrightarrow \mathbf{q}=\mathbf{P}^{\prime}{ }_{\perp}-\mathbf{P}_{\perp}$

\# density of partons with momentum x and position b tomography of N

valid for all $\mathrm{x} \Rightarrow \quad \rho^{0}(\mathbf{b})=\int d x \int \frac{d \mathbf{q}}{(2 \pi)^{2}} e^{i \mathbf{q} \cdot \mathbf{b}} H\left(x, 0, t=-\mathbf{q}^{2}\right)$

$$
=\int \frac{d \mathbf{q}}{(2 \pi)^{2}} e^{i \mathbf{q} \cdot \mathbf{b}} F_{1}\left(t=-\mathbf{q}^{2}\right)
$$

Dirac form factor

revolutionize the neutron

inside neutron

neutron core with negative charge plus π cloud with positive charge !

polarized $\mathrm{N} \rightarrow$ deformation

polarization $\mathrm{S}_{\mathrm{y}} \rightarrow$ spin-flip $\mathrm{E}\left(\mathrm{x}, 0,-\mathrm{q}^{2}\right) \rightarrow \mathrm{b}_{\mathrm{x}}$ deformation

 $\mathbf{b}=\mathrm{b}\left(\cos \Phi_{\mathrm{b}}, \sin \Phi_{\mathrm{b}}\right)$$$
\rho(\mathbf{b})=\rho^{0}(\mathbf{b})+\cos \phi_{b} \int_{0}^{\infty} \frac{d|\mathbf{q}|}{2 \pi} \frac{\mathbf{q}^{2}}{2 M} J_{1}(|\mathbf{q}| b) F_{2}\left(Q^{2}=\mathbf{q}^{2}\right)
$$

proton
polarization

A. Bacchetta \& M. Contalbrigo,

II Nuovo Saggiatore 28 (12) n.1,2

$E_{x} \sim$ dipole deformation
C. Carlson \& M. Vanderhaeghen, P.R.L. 100 (08) 032004

parton Orbital Angular Momentum

N^{\dagger} polarization along \mathbf{y} gives a twist along \mathbf{x} to parton charge densities because of their
Orbital Angular Momentum (OAM)
how to define it ?
(gauge-inv. definition is
common problem for gauge field th.'s)

definition \#1 of OAM

from Ji's sum rule :

OAM = total J - helicity

$$
\begin{aligned}
L_{z}^{q}\left(Q^{2}\right) & \equiv J_{z}^{q}\left(Q^{2}\right) \quad\left\{=\frac{1}{2} \int d x x\left[f_{1}^{q}\left(x ; Q^{2}\right)+E^{q}\left(x, 0,0 ; Q^{2}\right)\right]\right\} \\
& -S_{z}^{q}\left(Q^{2}\right) \quad\left\{=\int d x g_{1}\left(x ; Q^{2}\right)\right\}
\end{aligned}
$$

gauge invariant

 measurable $\left(\right.$ DIS $\rightarrow f_{1}, g_{1} ;$ DVCS $\left.\rightarrow E\right)$
definition \#1 of OAM

from Ji's sum rule :

$$
\begin{gathered}
\text { OAM }=\text { total J - helicity } \\
\begin{aligned}
L_{z}^{q}\left(Q^{2}\right) & \equiv J_{z}^{q}\left(Q^{2}\right) \quad\left\{=\frac{1}{2} \int d x x\left[f_{1}^{q}\left(x ; Q^{2}\right)+E^{q}\left(x, 0,0 ; Q^{2}\right)\right]\right\} \\
- & S_{z}^{q}\left(Q^{2}\right) \quad\left\{=\int d x g_{1}\left(x ; Q^{2}\right)\right\}
\end{aligned} \\
\text { gauge invariant } \\
\text { measurable }\left(\text { DIS } \rightarrow \mathrm{f}_{1}, \mathrm{~g}_{1} ; \text { DVCS } \rightarrow \mathrm{E}\right)
\end{gathered}
$$

but Lq does not satisfy canonical relations alternatives?...

the latest scenario from lattice

Connected Insertions Disconnected

	$\mathrm{CI}(\mathrm{u})$	$\mathrm{CI}(\mathrm{d})$	$\mathrm{CI}(\mathrm{u}+\mathrm{d})$	$\mathrm{DI}(\mathrm{u} / \mathrm{d})$	DI(s)	Glue
$\langle x\rangle$	0.416(40)	0.151(20)	0.567(45)	$0.037(7)$	0.023(6)	0.334(56)
$T_{2}(0)$	0.283(112)	$-0.217(80)$	0.061(22)	-0.002(2)	$-0.001(3)$	$-0.056(52)$
$2 J$	0.704(118)	-0.070(82)	$0.629(51)$	0.035(7)	$0.022(7)$	$0.278(76)$
g_{A}	0.91(11)	$-0.30(12)$	0.62(9)	-0.12(1)	-0.12(1)	-
$2 L$	-0.21(16)	$0.23(15)$	0.01(10)	0.16(1)	$0.14(1)$	-

TABLE III. Renormalized values in $\overline{M S}$ scheme at $\mu=2 \mathrm{GeV}$.

$$
\begin{aligned}
& g_{A}{ }^{0}=\Delta u+\Delta d+\Delta s \\
& 2 J-g_{A}{ }^{0}=2 L
\end{aligned}
$$

M. Deka et al. (XQCD), arXiv:1312.4816 [hep-lat]

Wigner Distribution

C. Lorcé, B. Pasquini, M. Vanderhaeghen,

JHEP 1105 (11) 041

Wigner Distribution

correlation of quark \perp momentum and position for \mathbf{S}_{N} and S_{q} polarizations not positive-definite but $\mathbf{b} \leftrightarrow \mathbf{q}=\mathbf{P}^{\prime}{ }_{\perp}-\mathbf{P}_{\perp}$ no constraint from Heisenberg principle
C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11) 041

$$
\int \mathrm{d} \mathbf{k}_{\perp} \mathrm{W}\left(\mathrm{x}, \mathbf{k}_{\perp}, \mathbf{b}_{\perp}\right) \rightarrow \mathrm{q}\left(\mathrm{x}, \mathbf{b}_{\perp}\right) \rightarrow \mathrm{GPD}
$$

Transverse Mom. Distributions (TMD)

$$
\begin{aligned}
& 5 \mathrm{D}-\int \mathrm{d} \mathbf{b}_{\perp} \mathrm{W}\left(\mathrm{x}, \mathbf{k}_{\perp}, \mathbf{b}_{\perp}\right) \\
& \mathbf{q}\left(\mathrm{x}, \mathbf{k}_{\perp}\right) \text { WMD } \quad \begin{array}{l}
\text { parton density in } k \text {-space } \\
\text { is not the F.T. of } \mathrm{q}\left(\mathrm{x}, \mathbf{b}_{\perp}\right)
\end{array}
\end{aligned}
$$

Transverse Mom. Distributions (TMD)

$5 \mathrm{D}-\int \mathrm{d} \mathbf{b}_{\perp} \mathrm{W}\left(\mathrm{x}, \mathbf{k}_{\perp}, \mathbf{b}_{\perp}\right)$
 $\mathrm{q}\left(\mathrm{x}, \mathrm{k}_{\perp}\right)$ TMD parton density in k -space is not the F.T. of $\mathrm{q}\left(\mathrm{x}, \mathbf{b}_{\perp}\right)$
leading twist: 8 TMDs

Twist-2 TMDs

Transverse Mom. Distributions (TMD)

$5 \mathrm{D}-\int \mathrm{d} \mathbf{b}_{\perp} \mathrm{W}\left(\mathrm{x}, \mathbf{k}_{\perp}, \mathbf{b}_{\perp}\right)$
 $\mathrm{q}\left(\mathrm{x}, \mathrm{k}_{\perp}\right)$ TMD parton density in k -space is not the F.T. of $q\left(x, \mathbf{b}_{\perp}\right)$
leading twist: 8 TMDs

Twist-2 TMDs

\author{

* Anselmino et al., P.R. D87 (13) 094019
 * A. Bacchetta, A. Courtoy, M. Radici, JHEP 03 (13) 119
}
$\int \mathrm{d} \mathbf{k}_{\perp} \mathbf{T M D}\left(\mathrm{x}, \mathbf{k}_{\perp}\right) \rightarrow \mathrm{PDF}(\mathrm{x})$

Transverse Mom. Distributions (TMD)

$5 \mathrm{D}-\int \mathrm{d} \mathbf{b}_{\perp} \mathrm{W}\left(\mathrm{x}, \mathbf{k}_{\perp}, \mathbf{b}_{\perp}\right)$
 $q\left(x, k_{\perp}\right)$ TMD parton density in k-space is not the F.T. of $\mathrm{q}\left(\mathrm{x}, \mathbf{b}_{\perp}\right)$
leading twist: 8 TMDs

$$
\begin{aligned}
& \int \mathrm{dx} \mathrm{~h}_{1}(\mathrm{x})=\text { tensor charge } \\
& \text { *Anselmino et al., P.R. D87 (13) } 094019 \\
& \text { *A. Bacchetta, A. Courtoy, M. Radici, } \\
& \text { JHEP } 03 \text { (13) } 119
\end{aligned}
$$

$\int \mathrm{d} \mathbf{k}_{\perp} \mathbf{T M D}\left(\mathrm{x}, \mathbf{k}_{\perp}\right) \rightarrow \mathrm{PDF}(\mathrm{x})$

$\int \mathrm{d} \mathbf{k}_{\perp} \mathbf{T M D}\left(\mathrm{x}, \mathbf{k}_{\perp}\right) \rightarrow \operatorname{PDF}(\mathrm{x}) ?$

$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 0 \\ & 0 \end{aligned}$	quark pol.			
		U	L	T
	U	f_{1}		h_{1}^{\perp}
	L		$g_{1 L}$	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Collins, Soper, Sterman, N.P. B250 (85) 199
Collins, "Foundations of perturb. QCD" (C.U.P., 11) Echevarria et al., E.P.J. C73 (13) 2636

$\int \mathrm{d} \mathbf{k}_{\perp} \mathbf{T M D}\left(\mathrm{x}, \mathbf{k}_{\perp}\right) \rightarrow \operatorname{PDF}(\mathrm{x}) ?$

Twist-2 TMDs

$$
\int_{0}^{\infty} \mathrm{dk}_{\perp} \quad \stackrel{\ll \mathrm{Q}}{\substack{\text { divergent } \\
\text { soft \& coll. g's }}} \begin{gathered}
\text { do } \\
\end{gathered}
$$

Collins, Soper, Sterman, N.P. B250 (85) 199
Collins, "Foundations of perturb. QCD" (C.U.P., 11) Echevarria et al., E.P.J. C73 (13) 2636
in \mathbf{b}_{\perp} space
$f_{1}^{q}\left(x, \mathbf{b}_{\perp} ; Q^{2}\right)=\sum_{i}\left[C_{q i} \otimes f_{1}^{i}\right]\left(x ; \frac{c_{0}^{2}}{b_{*}^{2}}\right) e^{S_{P}\left(b_{*} ; Q\right)} e^{S_{N P}\left(\mathbf{b}_{\perp}\right) \log Q / Q_{0}} f_{1}^{q}\left(x, \mathbf{b}_{\perp} ; Q_{0}^{2}\right)$

all divergent for $b_{\perp} \rightarrow \infty \quad\left(k_{\perp} \rightarrow 0\right)$
prescription: $\quad \mathrm{b}_{\perp} \Rightarrow b_{*}=\frac{b_{\perp}}{\sqrt{1+\frac{b^{2}}{b_{\text {max }}^{2}}}}$

$\mathrm{f}_{1} \mathrm{q}\left(\mathrm{x}, \mathbf{k}_{\perp}\right) \rightarrow \mathrm{LHC}$

	quark pol.			
0		U	L	T
	U	f_{1}		h_{1}^{\perp}
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$
U	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h^{\perp}{ }^{\perp}$
		wist-	TM	

impact of TMD on
 Z^{0} peak \rightarrow W mass

P. Nadolski, hep-ph/0412146

flavor analysis of $\operatorname{TMD}\left(x, \mathbf{k}_{\perp}\right)$

fit SIDIS
multiplicity from HERMES

A. Signori et al., JHEP1311 (13) 194

flavor analysis of $\operatorname{TMD}\left(x, \mathbf{k}_{\perp}\right)$

$$
x=0.1
$$

A. Signori et al., JHEP1311 (13) 194

down < up < sea ?

the Sivers effect

quark pol.
leading twist: 8 TMDs

Sivers function Twist-2 TMDs

distortion of quark distribution because of N^{\dagger} polarization

flavor dependence of Sivers effect

distribution of unpolarized q in polarized P^{\dagger}

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\perp}\right)=f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot \mathbf{S}}{M}
$$

 polarization

deformation along x
A. Bacchetta \& M. Contalbrigo,

II Nuovo Saggiatore 28 (12) n.1,2
the Sivers effect in semi-incl. DIS (SIDIS)
the Sivers effect in semi-incl. DIS (SIDIS)

Jefferson Lab Hall A

PRL107 (11) 072003

PL B673 (09) 127

Sivers effect has been measured in $\mathrm{N}^{\dagger}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi\right)$!

parametrizations of Sivers function

leading twist: 8 TMDs

GPD E

in b space

polarization

deformation

TMD $\mathrm{f}_{1 T^{\perp}}$
Sivers effect

i's sum rule $J_{z}^{q}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x x\left[H^{q}\left(x, 0,0 ; Q^{2}\right)+E^{q}\left(x, 0,0 ; Q^{2}\right)\right]$

aSSUMP onti, M. Radici, 010

$$
f_{1 T}^{\perp(0) q}\left(x ; Q_{L}^{2}\right)=-L(x) E^{q}\left(x, 0,0 ; Q_{L}^{2}\right)
$$

J's sum rule $J_{z}^{q}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x x\left[H^{q}\left(x, 0,0 ; Q^{2}\right)+E^{q}\left(x, 0,0 ; Q^{2}\right)\right]$

not accessible

assumption $f_{1 T}^{\perp(0) q}\left(x ; Q_{L}^{2}\right)=-L(x) E^{q}\left(x, 0,0 ; Q_{L}^{2}\right)$
A. Bacchetta, F. Conti, M. Radici,
P.R. D78 (08) 074010

lensing funct.

comparison with other GPD extractions and lattice results

\square	Goloskokov \& Kroll, EPJ C59 (09) 809	
\square	Diehl \& Kroll, E.P.J. C73 (13) 2397	
\square	Diehl et al., EPJ C39 (05) 1	
\square	Guidal et al., PR D72 (05) 054013	
\square	Liuti at al., PRD 84 (11) 034007	
\square	Bacchetta \& Radici, PRL 107 (11) 212001	
\square	LHPC-1, PR D77 (08) 094502	
\square	LHPC-2, PR D82 (10) 094502	
\square	QCDSF, arXiv:0710.1534	
\square	Wakamatsu, EPJ A44 (10) 297	
$J^{u-\bar{u}}=0.214_{-0.013}^{+0.009} \quad J^{d-\bar{d}}=-0.029_{-0.008}^{+0.021}$	\square	
$J^{u-\bar{u}}=0.230{ }_{-0.024}^{+0.009} \quad J^{d-\bar{d}}=-0.004_{-0.016}^{+0.010}$	\square	

Reason \#2 for the Sivers function

factorization theorems

Reason \#2 for the Sivers function

factorization theorems
universality

Reason \#2 for the Sivers function

factorization theorems

"Final" residual color interactions "Initial"
QCD prediction to be tested: Sivers $_{\left.\right|_{\text {SIDIS }}=- \text { Sivers }\left.\right|_{\text {D-Y }}, ~}^{\text {St }}$ (at COMPASS)

"roadmap" to a multi-dim. picture of N

"Electron Ion Collider: the Next QCD Frontier" arXiv:1212.1701 [nucl-ex]

$$
\operatorname{GPD}\left(x, \xi=0, t=-q^{2}\right)
$$

"roadmap" to a multi-dim. picture of N

"Electron Ion Collider: the Next QCD Frontier"

"roadmap" to a multi-dim. picture of N

future directions?

"Electron Ion Collider: the Next QCD Frontier" arXiv:1212.1701 [nucl-ex]

example : DVCS data

future directions?

"Electron Ion Collider: the Next QCD Frontier" arXiv:1212.1701 [nucl-ex]

example : DVCS data

future directions?

"Electron Ion Collider: the Next QCD Frontier" arXiv:1212.1701 [nucl-ex]

example : DVCS data

LHeC even smaller x, but no polarization...

With 3D projections, we will be entering a new age. Something which was never technically possible before: a stunning visual experience which 'turbocharges' the viewing. \int

James Cameron

