Nucleon

Structure theory

Marco Radici

understand the proton

quark-Higgs coupling

~ 9 MeV

understand the proton

99% of proton mass is generated by dynamics of QCD confinement

quark-Higgs coupling

~ 9 MeV

Hadron Physics

this talk

&

lattice QCD

the Infinite Momentum Frame (IMF)

probe short distances ⇒ Deep-Inelastic (DIS) regime

the Infinite Momentum Frame (IMF)

probe short distances ⇒ Deep-Inelastic (DIS) regime

all partons ~ collinear go beyond this approx.

main goal

the 3D-structure of the Nucleon

the 3D-structure of the Nucleon

mono-dim. info on heart activity

ECG

the 3D-structure of the Nucleon

mono-dim. info on heart activity

ECG

3-dim. tomography cardio of heart activity MR

the proton spin budget ?

since EMC (1988, the "spin crisis") we can't yet explain the proton spin in terms of its constituents

OAM = Orbital Angular Momentum

the proton spin budget ?

OAM = Orbital Angular Momentum

new tools needed

new tools needed

non-diagonal $(P' \neq P)$ hadronic matrix element

new tools needed

non-diagonal $(P' \neq P)$ hadronic matrix element

GPD (x, ξ , t; Q²)

GPD (x, ξ , t; Q²)

GPD (x, ξ , t; Q²)

GPD
$$(x, \xi, t; Q^2)$$

 $\lim_{\xi,t\to 0} GPD(x,\xi,t) = PDF(x)$ $H^{q}(x,\xi\to 0,t\to 0) \Rightarrow f_{1}^{q}(x)$ $J_{z}^{q} = \frac{1}{2} \int dx \, x \, [H^{q}(x,0,0) + E^{q}(x,0,0)]$ not directly accessible (E^{q} \to N spin flip) need model extrapolation

GPD
$$(x, \xi, t; Q^2)$$

 $\lim_{\xi,t\to 0} GPD(x,\xi,t) = PDF(x)$ $H^{q}(x,\xi\to 0,t\to 0) \Rightarrow f_{1}^{q}(x)$ $J_{z}^{q} = \frac{1}{2} \int dx x [H^{q}(x,0,0) + E^{q}(x,0,0)]$ $= \frac{1}{2} [A_{2,0}^{q}(0) + B_{2,0}^{q}(0)]$ not directly accessible (E^{q} \to N spin flip) need model extrapolation

moments of GPD

Generalized Form Factors calculable on lattice A_{1,0} (\equiv F₁), B_{1,0} (\equiv F₂), A_{2,0}, B_{2,0}, A_{3,0}, A_{3,2}... B_{3,0}, B_{3,2}...

J^q results (model) params. of **GPD**

 Φ azimuthal angle of γ / M

A. Bacchetta & M. Radici, arXiv:1206.2565 [hep-ph] "Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab", E.P.J. A48 (12) 187 9

J^q results compare with lattice QCD

A. Bacchetta & M. Radici, arXiv:1206.2565 [hep-ph] "Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab", E.P.J. A**48** (12) 187 10

tomography of the Nucleon

GPD limit : $\xi \rightarrow 0$ (P⁺=P'⁺); $t \rightarrow -(\mathbf{P'}_{\perp} - \mathbf{P}_{\perp})^2 = -\mathbf{q}^2$ $q(x, \mathbf{b}) = \int \frac{d\mathbf{q}}{(2\pi)^2} e^{i\mathbf{q}\cdot\mathbf{b}} H(x, 0, t = -\mathbf{q}^2)$ $\mathbf{q}(\mathbf{x}, \mathbf{b})$ is a density in $\mathbf{b} \leftrightarrow \mathbf{q} = \mathbf{P'}_{\perp} - \mathbf{P}_{\perp}$ # density of partons with momentum x and position \mathbf{b} tomography of N

tomography of the Nucleon

GPD limit :
$$\xi \rightarrow 0$$
 (P⁺=P'⁺); $t \rightarrow -(\mathbf{P'}_{\perp} - \mathbf{P}_{\perp})^2 = -\mathbf{q}^2$
 $q(x, \mathbf{b}) = \int \frac{d\mathbf{q}}{(2\pi)^2} e^{i\mathbf{q}\cdot\mathbf{b}} H(x, 0, t = -\mathbf{q}^2)$
 $\mathbf{q}(\mathbf{x}, \mathbf{b})$ is a density in $\mathbf{b} \leftrightarrow \mathbf{q} = \mathbf{P'}_{\perp} - \mathbf{P}_{\perp}$
density of partons with momentum x
and position \mathbf{b}
tomography of N

valid for all
$$x \Rightarrow \rho^{0}(\mathbf{b}) = \int dx \int \frac{d\mathbf{q}}{(2\pi)^{2}} e^{i\mathbf{q}\cdot\mathbf{b}} H(x,0,t=-\mathbf{q}^{2})$$
$$= \int \frac{d\mathbf{q}}{(2\pi)^{2}} e^{i\mathbf{q}\cdot\mathbf{b}} F_{1}(t=-\mathbf{q}^{2})$$

G.A. Miller, P.R.L. 99 (07) 112001

Dirac form factor

revolutionize the neutron

plus π cloud with positive charge !

polarized N \rightarrow deformation

13

parton Orbital Angular Momentum

N[†] polarization along y gives a twist along x to parton charge densities because of their Orbital Angular Momentum (OAM)

how to define it ?

(gauge-inv. definition is common problem for gauge field th.'s)

definition #1 of OAM

from Ji's sum rule : OAM = total J - helicity $L_z^q(Q^2) \equiv J_z^q(Q^2) \left\{ = \frac{1}{2} \int dx \, x \left[f_1^q(x;Q^2) + E^q(x,0,0;Q^2) \right] \right\}$ $- S_z^q(Q^2) \left\{ = \int dx \, g_1(x;Q^2) \right\}$

gauge invariant measurable (DIS \rightarrow f₁, g₁; DVCS \rightarrow E)

definition #1 of OAM

from Ji's sum rule : OAM = total J - helicity $L_z^q(Q^2) \equiv J_z^q(Q^2) \left\{ = \frac{1}{2} \int dx \, x \left[f_1^q(x;Q^2) + E^q(x,0,0;Q^2) \right] \right\}$ $- S_z^q(Q^2) \left\{ = \int dx \, g_1(x;Q^2) \right\}$

gauge invariant measurable (DIS \rightarrow f₁, g₁; DVCS \rightarrow E)

but L^q does not satisfy canonical relations alternatives?...

for a review E. Leader & C. Lorcé, arXiv:1309.4235 [hep-ph]

the latest scenario from lattice

Wigner Distribution

C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11) 041

correlation of quark **__** momentum and position for S_N and S_q polarizations not positive-definite but $\mathbf{b} \leftrightarrow \mathbf{q} = \mathbf{P'}_{\perp} - \mathbf{P}_{\perp}$ no constraint from Heisenberg principle

Wigner Distribution

C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11) 041

 $\int d\mathbf{k}_{\perp} W(\mathbf{x}, \mathbf{k}_{\perp}, \mathbf{b}_{\perp}) \rightarrow q(\mathbf{x}, \mathbf{b}_{\perp}) \rightarrow GPD$

 h_1, h_{1T}^{\perp}

nucleon pol

Twist-2 TMDs

 g_{1T}

 f_{1T}^{\perp}

Т

$\int d\mathbf{k}_{\perp} \mathbf{TMD}(\mathbf{x}, \mathbf{k}_{\perp}) \rightarrow \mathbf{PDF}(\mathbf{x}) ?$

Twist-2 TMDs $\,$

 $\int_0^\infty dk_\perp$

0 << Q		~ Q	L.
divergent	dσ	match	Κ」
soft & coll. g's	?	fixed order	
→ resum large logs			

Collins, Soper, Sterman, N.P. **B250** (85) 199 Collins, "Foundations of perturb. QCD" (C.U.P.,11) Echevarria et al., E.P.J. **C73** (13) 2636

$\int d\mathbf{k}_{\perp} \mathbf{TMD}(\mathbf{x}, \mathbf{k}_{\perp}) \rightarrow \mathbf{PDF}(\mathbf{x}) ?$

 $f_1^q(\mathbf{x}, \mathbf{k}_\perp) \rightarrow LHC$

flavor analysis of $TMD(x, \mathbf{k}_{\perp})$

Twist-2 TMDs

fit SIDIS multiplicity from HERMES

A. Signori et al., JHEP1311 (13) 194

flavor analysis of $TMD(x, \mathbf{k}_{\perp})$

fit SIDIS

multiplicity

from **HERMES**

Twist-2 TMDs

A. Signori et al., JHEP1311 (13) 194

the Sivers effect

D. Sivers, P.R. D41 (90) 83

flavor dependence of Sivers effect

distribution of unpolarized q in polarized P[†]
$$f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = f_1^q(x, \mathbf{k}_{\perp}^2) - f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}^2) \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot \mathbf{S}}{M}$$

the Sivers effect in semi-incl. DIS (SIDIS)

the Sivers effect in semi-incl. DIS (SIDIS)

parametrizations of Sivers function

26

GPD E

TMD f_{1T}^{\perp} Sivers effect

M. Burkardt, P.R. D66 (02) 114005

Ji's sum rule
$$J_z^q(Q^2) = \frac{1}{2} \int_0^1 dx \, x \left[H^q(x,0,0;Q^2) + E^q(x,0,0;Q^2) \right]$$

not accessible
assumption
$$f_{1T}^{\perp(0)q}(x;Q_L^2) = -L(x)E^q(x,0,0;Q_L^2)$$

A. Bacchetta, F. Conti, M. Radici,
P.R. D78 (08) 074010 (at some QL)

28

P.R. D78 (08) 074010

Reason #2 for the Sivers function

Reason #2 for the Sivers function

Reason #2 for the Sivers function

"roadmap" to a multi-dim. picture of N

"Electron Ion Collider: the Next QCD Frontier" arXiv:1212.1701 [nucl-ex]

GPD(x, $\xi = 0$, t=-q²)

"roadmap" to a multi-dim. picture of N

"roadmap" to a multi-dim. picture of N

future directions ?

example : DVCS data

"Electron Ion Collider: the Next QCD Frontier" arXiv:1212.1701 [nucl-ex]

> EIC VS= 140 GeV, 0.01 × V × 0.95 Current DVCS data at colliders: 10³ O ZEUS- total xsec
> ● ZEUS- do/dt ☐ H1- total xsec
> ■ H1- dσ/dt
> ■ H1- A_{CU} Current DVCS data at fixed targets: ▲ HERMES- A_{LT} ▲ HERMES- A^{CU}
> ▲ HERMES- A_{LU}, A_{UL}, A_{LL} ▲ HERMES- AUT ★ Hall A- CFFs ₭ CLAS- A_{LU} ★ CLAS- A_{UL} 10² Q^2 (GeV²) 40.95 Planned DVCS at fixed targ .: Q^2 =50 GeV² COMPASS- do/dt, A_{CSU}, A_{CST} JLAB12- do/dt, ALU, AUL, ALL 45 GeV, 0.01* 0 0 10 0 1 10⁻³ 10⁻² 10⁻⁴ 10⁻¹ 1 Х

future directions ?

example : DVCS data

"Electron Ion Collider: the Next QCD Frontier" arXiv:1212.1701 [nucl-ex]

future directions ?

LHeC even smaller x, but no polarization...

With 3D projections, we will be entering a new age. Something which was never technically possible before: a stunning visual experience which 'turbocharges' the viewing.

James Cameron

