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Overvisw

= Multivariate classification/regression algorithms (MVA)
= what they are
= how they work

= OQverview over some classifiers
= Multidimensional Likelihood (kNN : k-Nearest Neighbour)
= Projective Likelihood (naive Bayes)
» Linear Classifier

= Non linear Classifiers
= Neural Networks
= Boosted Decision Trees

= Support Vector Machines
= General comments about:

= Overtraining

= Systematic errors
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Evernt Classificaiior) =y =

" Discriminate Signal from Background
we have discriminating observed variables x,, X,, ...
—> decision boundary to select events of type S ?
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" Which model/class * and cons ?
Low variance (stable), high bias methaods High variance, small bias methods

" Once decided on a class of boundaries, how to find the “optimal” one ?

Helge Voss INFN School of Statistics 2015



" e.g. : photon energy as function “D”-variables ECAL shower parameters + ...

Energy

Funciion Esiirnaiion: Regrassion =« =

" estimate “functional behaviour” from a set of ‘known measurements” ?

= known analytic model (i.e. nth -order polynomial) 0 Maximum Likelihood Fit)

Cluster Size

= no model ?

- “draw any kind of curve” and parameterize it?
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" seems trivial ? > human brain has very good pattern recognition capabilities!

" what if you have many input variables?
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Regression — rnodel funct

" Estimate the ‘Functional Value’
" From measured parameters

f(xf* 1-D example *® 2-D example
o ° events generated according: underlying distribution
° [ ]
° [ ] [ ]
[ [
Y e O®po

. . B
8 3 SR
e

X

" better known: (linear) regression = fit a known analytic function
" e.g. the above 2-D example - reasonable function would be: f(x) = ax?+by?+c
" don’t have a reasonable “model” ? - need something more general:
" e.g. piecewise defined splines, kernel estimators, decision trees to approximate f(x)

- NOT in order to “fit a parameter”
—> provide prediction of function value f(x) for new measurements x (where f(x) is not known)
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Evernt Classificaiior) =y =

" Each event, if Signal or Background, has “D” measured variables.

4 5
log(sIPS_pi)

[TMVA In put Variableslog (FS_Bd)|

" Find a ing from D-dimensional input-observable ="feature” space
y(ax?. RBSR. mos a%eneral form

PD to one dimensional output -> class I

oar.59 y =y(X); x ePP
" P

PY “feature X={Xy,-..-,Xp}: input variables
® space”
: " plotting (historamming) % 3.5‘;‘;?;kﬂmd E
® the resulting y(x) values: 5 sf =
‘ z.s; -
2 _
o | : X E
W : :
:: 7 ° 0.2 0.4 08 08 1 :
T / y(x)
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everni Classificatior) =

" Each event, if Signal or Background, has “D” measured variables.

TMVA Input Variablesiog{sIPS_pi)

" Find a mapping from D-dimensional input/observable/’feature” space

4 5
log(sIPS_pi)

[TMVA In put Variableslog (FS_Bd)|

log(FS_Bd)

PD

to one dimensional output
—> class labels

y(X): R">R:

— P

#entries ( PDFs,s(Y)

a
=
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=< Signal
=== Backgr

- O’ y(S) .%—'Ilpe1 Error

= Type 2 Error

e
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“feature y

space” " y(x): “test statistic” in D-dimensional space of input variables

" distributions of y(x): PDF¢(y) and PDFg(y)

> cut: signal
= cut: decision boundary
< cut: background

® used to set the selection cut!

y(X):

—> efficiency and purity

" y(x)=const: surface defining the decision boundary.

J
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" overlap of PDF¢(y) and PDFg(y) = separation power , purity

log(alPS_IMinus)
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TMVA Input Variablesiog{sIPS_pi)

log(sIPS_pi)

[TMVA In put Variableslog (FS_Bd)|

“feature
space”

< 3

A 3
i PRkl i s

log(alPS_IMinus)
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Clsslflcziorn « Regressiorn =

Classification:
" Each event, if Signal or Background, has “D” measured variables.

[ MVA distributions |

" y(x): RP>R: “test statistic”
in D-dimensional space of
input variables

%4 Signal

=== Backgr

—— Type 1 Error
- Type 2 Error

" y(x)=const: surface defining
the decision boundary.

#entries ( PDFSEB(y)

y(x): RP>R: 07
— y
Regression:
" Each event has “D” measured variables + one function value
(e.g. cluster shape variables in the ECAL + particles energy)
" y(x): RP>R “regression function”

" y(x)=const -> hyperplanes where the .
. SRS
target function is constant e

$iae Rt

Now, y(X) needs to be build such that it

best approximates the target, not such

that it best separates signal from bkg by demanding y(x) > const -
signal and y(x) < const - background



Evernt Classificatior e

y(x): R">R: the mapping from the “feature space” (observables) to one output variable

Normalized

_giag;:gm'un'd' T '_f/. PDFg(y). PDF(y): normalised distribution of y=y(x)
- for background and signal events

(i.e. the “function” that describes the shape of the
distribution)
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with y=y(x) one can also say PDF3(y(X)), PDF(y(X)): :

=
o

=

o 0z o4 oo “Iy(xi_ Probability densities for background and signal

now let’s assume we have an unknown event from the example above for which y(x) = 0.2

> PDFg(y(x)) = 1.5 and PDF¢(y(x)) = 0.45

let f5 and fg be the fraction of signal and background events in the sample, then:

fsp D|:S (y) is the probability of an event with

f.PDF.(y) + f,PDF, (y)

=P(C =S]|Y) measured x={x,,.....x;} that gives y(x)
to be of type signal



evernt Classificaition SN

P(Class=C|x) (or simply P(C|x)) :  probability that the event class is of C, given the
measured observables x={X,....,Xp} = Y(X)

Probability density distribution

according to the measurements X
and the given mapping function Prior probability to observe an event of “class C”

I.e. the relative abundance of “signal” versus

\ jbackground” > P(C) = f; = %
P(Class=C|y)= VY| FSZ()E)P(C)
/ C

Posterior probability

Overall probability density to observe the actual
measurement y(x). i.e. P(y)= »  P(y|Class)P(Class)

Classes

" |t’s a nice “exercise” to show that this application of Bayes’ Theorem
gives exactly the formula on the previous slide !
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= Type 1 error: reject H, (i.e. the ‘is bkg’ hypothesis) although it would haven been true

= 2 background contamination
= Significance a: background sel. efficiency 1- a: background rejection

= Type 2 error: accept H, although false
= - |oss of efficiency

= Power: 1- B signal selection efficiency
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VIVA anc Viaenine Learning ==

« Finding y(x) : R"™>R
B given a certain type of model class y(x)
®» “fits” (learns) from events with known type the parameters in y(x)
such that y:
" CLASSIFICATION: separates well Signal from Background in training data

" REGRESSION: fits well the target function for training events

® use for yet unknown events = predictions

-> supervised machine learning

Helge Voss INFN School of Statistics 2015 12



=Vert Classificsitior) — firelineg
tne maoing funciion y(x)

PDF(x|S)

PDF(x|B)

" 2 p(x|S) and p(x|B) are typically unknown:

- Neyman-Pearsons lemma doesn’t really help us directly

" Neyman-Persons: y(x) =

" Monte Carlo simulation or in general cases: set of known (already classified) “events”

" Use these “training” events to:

estimate p(x|S) and p(x|B): (e.g. the differential cross section folded with the detector
influences) and use the likelihood ratio

- e.g. D-dimensional histogram, Kernel density estimators, ...

é(generative algorithms)

OR

find a “discrimination function” y(x) and corresponding decision boundary (i.e.
hyperplane* in the “feature space”: y(x) = const) that optimally separates signal from
background

- e.g. Linear Discriminator, Neural Networks, ...

é(discriminative algorithms)

* hyperplane in the strict sense goes through the origin. Here | mean “affine set” to be precise



R&Cz0: -

Multivariate Algorithms - combine all ‘discriminating’ measured variables
into ONE single “MVA-variable” y(x): R® > R

— contains ‘all’ information from the “D”-measurements
—> allows to place ONE final cut

- corresponding to an (complicated) decision boundary in D-
dimensions

— may also be used to “weight” events rather than to ‘cut’ them away

y(X) is found by
— estimating the pdfs and using the likelihood ratio

OR
- Via training:

—> fitting the free parameters “w” (weights) in some model y(x; w) to
‘known data’



Overview

= Multivariate classification/regression algorithms (MVA)
= what they are
* how they work

= Overview over some classifiers
= Multidimensional Likelihood (kNN : k-Nearest Neighbour)
= Projective Likelihood (naive Bayes)
» Linear Classifier

= Non linear Classifiers
= Neural Networks
= Boosted Decision Trees

= Support Vector Machines
= General comments about:
= Overtraining

= Systematic errors
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K- Negarest Neignoour ==

“‘events” distributed according to P(x
" estimate probability density P(x) in D-dimensional space: J )

A
. . . ‘et ” . ... ° e o h
" The only thing at our disposal is our “training data e ee® o o
e 0®° ® oo ® o
e o
= Say we want to know P(x) at “this” point “x” ':.. . O o0, ® o
° e®0 o °
" One expects to find in a volume V around point “x” I >
[ [ J
N*[P(x)dx events from a dataset with N events ®* P ee oo *S -
v . 00 o 000 X
" For the chosen a rectangular volume *e* _
> K-events: X,

N 1, .
_ X—Xn : (1, Jlwyy| <=,i=1..D k(u): is called
) = anl k( h )’ with ke(u) = {O, l otfferwise a Kernel function:

" K (from the “training data”) = estimate of average P(x) in the volume V: [P(x)dx = K/N

\/

1 45 1 X — X
® Classification: Determine P(X) —_ — E —Dk n
PDF¢(x) and PDFg(x) N n=1 h h
— likelihood ratio as classifier!

- Kernel Density estimator of the probability density
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" estimate probability density P(x) in D-dimensional space: “eveg;ts” distributed according to P(x)
. . . . . X2 ¢ o o h
" The only thing at our disposal is our “training data” *lreee® o o
o o ° °
e o e o o o
" Say we want to know P(x) at “this” point “x” °.°.' . o, "ees 00"
° e o | .
" One expects to find in a volume V around point “x” o of .:. y 2
[ [}
N*[P(x)dx events from a dataset with N events ® o ee 00 %0 O\
v o 00 o 000 X
[ ([
" For the chosen a rectangular volume *° _
- K-events: X,

N 1, .
_ X—Xn : (1, Jlwyy| <=,i=1..D k(u): is called
i) = anl k( h )’ with ke(u) = {O, l Otfferwise a Kernel function:

" K (from the “training data”) > estimate of average P(x) in the volume V: JP(x)dx = K/N

\Y

" Regression: If each events with (x;,X,) carries a “function value” f(x;,X,) (e.g. energy of incident

particle) - 1N P,
NZk(x' —X)f(X') = jf(X)P(X)dX i.e.: the average function value
i v




gelfeS

> elgﬁs—)o_ur ariel Sernel

et

_) 1““ Jl !r! “ ffl Jé\;egsrdlstrlbuted according to P(x)

" estimate probability density P(x) in D-di nS|onaI space:

Xz
" The only thing at our disposal is our “training data”

(13t

" Say we want to know P(x) at “this” point “x

" One expects to find in a volume V around point “x
N*[P(x)dx events from a dataset with N events

Vv

" For the chosen a rectangular volume

- K-events:

" determine K from the “training data” with signal and
background mixed together

—kNN : k-Nearest Neighbours
relative number events of the various
classes amongst the k-nearest neighbours

y(X )—?S

" Kernel Density Estimator: replace “window” by “smooth”
kernel function = weight events by distance (e.g. via

Gaussian)




Kernel Densiiy Estirneaior

N
P(X) — i Z Kh (X - Xn) . a general probability density estimator using kernel K

" h: “size” of the Kernel -> “smoothing parameter”

" chosen size of the “smoothing-parameter” - more
important than kernel function

" h too small: overtraining
" h too large: not sensitive to features in P(X)

" which metric for the Kernel (window)?
= normalise all variables to same range
= include correlations ?
= Mahalanobis Metric: x*x 2 xV-1x

" a drawback of Kernel density estimators:

h = 0.005

AA ]l\l\IL

"t

0.5

1
(Christopher M.Bishop)

Evaluation for any test events involves ALL TRAINING DATA - typically very time consuming



Bellman, R. (1961), Adaptive o 3 - - ))
Control Processes: A Guided 33 - ol en o \ / P -2 )" ' /. a G
Tour, Princeton University Press. C/ LJ _r:) \'3\ O JJ D J _r_r_] 1;) _rJ :)J O _r_] S_l J J E‘\/ R ERek NSt
We all know:

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due
to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies: £
£
%o.a}
" higher dimensional cases K-events often are not in ® 0.6 /T
a small “vicinity” of the space point anymore: oal —D=2
- -D=3 |—
oF —p=10 [
C Lo o0 o 0 o o0 0 B o w n I o o o [ o o0
I . =1D 0 0.02 0.04 0.06 0.08 0.1
consider: total phase space volume V=1 Volume fraction

for a cube of a particular fraction of the volume:

edge length=(fraction of volume)""

" 10 dimensions: capture 1% of the phase space
- 63% of range in each variable necessary -» that's not “local” anymore..®

2> develop all the alternative classification/regression techniques
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Multivariate Likelihood (k-Nearest Neighbour)
—> estimate the full D-dimensional joint probability density

: : D product of marginal PDFs
If correlations between variables are weak: >P(x) = [ [P(x)

0 (1-dim “histograms”)
PDFs discriminating variables
ﬁ( P.signal(x_ ) )
Likelihood ratio |, __icfvariables] -
y(XPDEvkevent )
for event event Z H pC (x. ) Classes: signal,
Ce{classes} \ ie{variables} | e background types
V\ /
" One of the first and still very popular MVA-algorithm in HEP sl o - ? ;
...:...: ¢ {
® No hard cuts on individual variables, fy/////////é
" allow for some “fuzzyness”: one very signal like variable may sé“
counterweigh another less signal like variable Ho /-
. - . s >
" optimal method if correlations == 0 (Neyman Pearson Lemma) X,
" try to “eliminate” correlations = e.g. linear de-correlation PDE introduces fuzzy logic

Helge Voss INFN School of Statistics 2015 21



Nzlve Bayesiarn Classifier
(orojective Likelinoocd Classifier)

0 Where to get the PDF’s ?

» Simple histograms » Smoothing (e.g. spline or kernel

[ TMVA Input Variable: vari+var2 | [ TMVA Input Variable: varl-var2 |
s E 0.5 BIS\gﬁaII 1 DBAAE RAREE RARRS LA b
:n = L 1. _I||||I||||I|||| ||||I.||||||||I||||I|| |Il
& E o4 777 Background 1z IS Input data (sugnal} i
s = F ., S - b
s 600 Estimated PDF (norm. signal) | -

500

400

300}

200}

100}
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= Multivariate classification/regression algorithms (MVA)
= what they are

* how they work

= OQverview over some classifiers
= Multidimensional Likelihood (kNN : k-Nearest Neighbour)
= Projective Likelihood (naive Bayes)
= Linear Classifier

= Non linear Classifiers
= Neural Networks
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= Support Vector Machines
= General comments about:

= Overtraining

= Systematic errors
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Classifier Training zrnc Loss-Funciion

= Discriminative algorithms:
= No PDF estimation

= But fit a “decision boundary” directly: i.e.

—> provide a set of “basis” functions h; (“a model”):
> y(x) = Ywih;(x)

" adjust parameters w;
- optimally separating hyperplane (surface) - “training”

Helge Voss INFN School of Statistics 2015
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Linezzar Discrirninznt g

(
/

M
General: Y0 = (g, 0] = ) wily(6)
i=0
D
Linear Discriminant: y(x ={xq, ..., xp}) = wp + 2 W; X
i=1

l.e. any linear function of the input variables: - linear decision boundaries

-..:;e + .| PDF of the test statistic y(x)
R - determine the “weights” w that separate “best”
PDF¢ from PDF,




rlonzrs Lingzr Discerlllnzrs ==

y(x ={xq, ..., xp}) = y(X, W) = wy + Zwixi
i=1

18 Sighat 1| T T T E
s [ Background | === 4 determine the "weights” w that do “best”

Normallzed
—
[--]

" Maximise “separation” between the S and B

—> minimise overlap of the distributions of y5 and yg
" maximise the distance between the two mean
values of the classes
" minimise the variance within each class

2 2 T =Twvwe [ o .
Oy +ays w!iWwWw within" variance

— 2 T pi ns " .
> maximise JW) = (Elygl-E[ysD? _ wT'Bw _ "in between" variance

V—W>](V_V>) =0=> wox W (%) — (X)) the Fisher coefficients

L=

note: these quantities can be calculated from the training data



Classifier Training zanc Loss-Furnciion  =«=
More general: rather than: maximize J(w) constructed “by hand”

> minimize a the expectation value of a “Loss function” L(y*", y(x))
which penalizes prediction errors for training events

regression: yirain = the functional value of training event i which
happens to have the measured observables x;

classification:  yf"*" =1 for signal, =0 (-1) background

What to choose for L(yt" ", y(x)) 2

®* Regression:

E[L] = E[(yt" @™ —y(x) . squared error loss (regression)
y y

* (Classification:

E[L] = E[y" ™™ log(y(x;)) + (1 — ™) log(1 — y(x;))] binomial loss



Classifier Training enc Loss-Funcijon =« =

* Regression: y{"*" : Gaussian distributed around a mean value

* Remember: Maximum Likelihood estimatior (Tuesday by Glen Cowan)

—2 Maximise: log probability of the observed training data:

events events events

logL =log | | PO nlyG) = ) ogPOI M yG) = Y. (= y(xp)

i
E[L] = E|(y*" 4" —y(x ))2] squared error loss (regression)

* Classification: now: y %" (i.e. is it ‘signal’ or ‘background’) is Bernoulli distributed

events f
train train

logL = ) 1og(P(y{7 ™ y(x) = ) log(P(Slx*"" P(BIx) """ )

If we now say y(x) should simply parametrize P(S|x); P(B|x)=1-P(B|x) =

E[L] = E[yf" ™™ log(y(x;)) + (1 — y/" ™) log(1 — y(x;))] binomial loss

Helge Voss INFN School of Statistics 2015 28



*

Fisher Discriminant:

— equivalent to Linear Discriminant with ‘squared loss function’

- Ups: didn’t we just show that “classification” would naturally use
‘binomial loss function” ?

- 0O.k. let’s build a linear classifier that maximizes ‘binomial loss’:

- For y(x) to parametrize P(S|x), we clearly cannot ‘use a linear
function for ‘y(x)’

— But we can ‘squeeze’ any linear function w, + ijxf = Wx into the
proper interval 0 < y(x) < 1 using the ‘logistic function’ (i.e. sigmoid

function) —
Logistic Regression 4 -
_ . : . 1 /
=2 y(x) = P(S|x) = sigmoid(Wx) = e |
_ P(SIx)\ _ o | /
> Log(0dds) = Log (P(le)) = Wx is linear! B I

Note: Now y(x) has a ‘probability’ interpretation. y(x) of the Fisher discriminant was ‘just’ a
discriminator.



Netral Networks

for “arbitrary” non-linear decision boundaries = y(x) non-linear function

" Think of h,(x) as a set of “basis” functions
N ; B " If h(x) is sufficiently general (i.e. non linear), a linear
y(X) = sigmoid z wichy (X) combination of “enough” basis function should allow to

describe any possible discriminating function y(x)

there are also mathematical proves for this statement.

Imagine you chose do the following:

h;(x)
A

4

y(x)= A ikal %*i%)
k 1

A non linear (sigmoid) function of
a linear combination of
non linear function(s) of

output

s
_/

0

activation

Ready is the Neural Network

1
1+e™
the sigmoid function

AX)=

linear combination(s) of Now we “only” need to find the appropriate “weights” w

the input data



Neural Negtworks:
Miuliilayer Percaoiron VILP

— R ——

But before talking about the weights, let’s try to “interpret” the formula as a Neural Network:

Dvar
discriminating
input variables
as input

+1 offset

input layer hidden layer ouput layer

<

output
1 A

_/

0  activation

M D
................ > O output: y(x):z WOiA W, +Z Wij . Xj
i i=1

“ Activation” function
e.g. sigmoid:

AX)=(L+e™)"

or tanh
or ...

" Nodes in hidden layer represent the “activation functions” whose arguments are linear
combinations of input variables - non-linear response to the input

" The output is a linear combination of the output of the activation functions at the internal nodes

" Input to the layers from preceding nodes only - feed forward network (no backward loops)

" |t is straightforward to extend this to “several” input layers

Helge Voss

INFN School of Statistics 2015
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gural Networs:
. ' ' SRy ' —_— 1
Miultilayer Perceoiron VILP
try to “interpret” the formula as a Neural Network:
input layer hidden layer ouput layer
A M D
T O output y(x):ZWOiA WiO+ZWiJ X
Dvar 7
filscrlmm.a tng outpul “ Activation” function
input variables < 14 oo siemoid:
as input ﬁ 5 518 '
+ 1 offset - A(x) = (1+ - )_1
J = or tanh
0 activation or ...
nodes=>neurons Neural network: try to simulate reactions of
links(weights)->synapses a brain to certain stimulus (input data)

Helge Voss INFN School of Statistics 2015 32



Neural Networik Trainirng =

Now we just need to fix the parameters by ? - Minimizing Loss function:

events , . .
train 2 l.e. use usual “sum of squares
Lwy = ) (yren —y(x))
[
true predicted
classification: Binomial loss
events
L(w) = 2 (i ™ log(y(xy)) + (1 — ¥ )log(1 — y(x;)))
i train _ V1, signal
where y - 0, bClegT

= y(x): very “wiggly” function - many local minima.
—one global overall fit not efficient/reliable



BeCK-0roozgeiion a =

oL

back propagation ( nice recursive formulation of the gradient ——
t

using ‘chain rule’)

Q(Stochastic) gradient decent: update weights ‘along the gradient’ at each training ster

Dw; o W=7 Gwrs = learning rate

" online learning: update event by event
" (mini) batch learning: update after seeing the whole (parts of the) sample

Simple “gradient” is typically not the most effective function minimizer:

— Use function curvature (“hessian” matrix) a la Newton method

- “Momentum” - accelerate the learning when gradient direction stays
‘constant’ e.g.:

2 v -ouv —nVL ; w;j > w;;+v  (classical momentum)
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- Momentum
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YWrlzte 15 “Daao Lazirpinef” =

Neural networks with ‘many hidden layers’

= Learn a hierarchy of features: i.e. successive layers learn: 4-vectors
—> invariant masses - decays)

= Used to be ‘impossible to train’ = vanishing gradient problem

= Enormous progress in recent years
= Layerwise pre-training using ‘auto-encoders’ or ‘restricted-
Boltzman machines’
= ‘intelligent’ random weight initialisation
= Stochastic gradient decent with ‘momentum’
= ‘new’ activation functions:

fiot
R E—
- ' fo=y

f(3)=0 y

f(v)=ay

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the

Figure 1. Optimization in a long narrow valley : ? ; . :
< . ; negative part is not constant and is adaptively learned.
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SUTNINzry -

= Multivariate Algorithms are a powerful alternative to “classical cuts”
that:

= Do not use hard selection criteria (cuts) on each individual
observables
= Look at all observables “together”
- eg. combining them into 1 variable

- Mulitdimensional Likelihood = PDF in D-dimensions
- Projective Likelihood (Naive Bayesian) = PDF in D times 1
dimension
- Be careful about correlations

— Linear classifiers : y(x) = ‘linear combination of observables “x”’
- decision boundary (y(x) = const) is alinear hyperplane

- Non-linear classifier: Neural networks =-> any kind of hyperplane



Whnat if tnere are correlations? =

" Typically correlations are present: C;=cov[ X; , X; |=E[ x; x; I-E[ X; JE[ X; [70 (i#))

[TMVA

Normalised

03

Input Variable: vari+var2 | [ TMVA Input Variable: vari-var2 |
?, 0.5 EISIQHHI """""""""""""" *—
= 7] Background i i i
£ 04F | Correlation Matrix (signal) |
Q
= 0.3k linear correlation coefficients in %
3 100
vard 80

0.2f

]
*
r i A ]
0.1 N 7 i -
: T
nl i

D-n
4 3 -2 -1 0 1 2 3

60
40
—120
-0
-20

U/O-flow (S, B): (0.0, 0.0)% / (0.1, 0.0)%
U/O-flow (S,B): (0.0, 0.0)% / (0.3, 0.0)%

vari+var2 vari-var2

[ TMVA Input Variable: var3 | [ TMVA Input Variable: var4 | T-varz
-40
T oasf E T 04 3
8 1 & | 5
= oaf 12§ 0.35F 12
E E Eg E F 12 14+var2
5 "% jo g 03p is
Z oa3f e = E ie
M N 0.25F 13 -100
- J e o 1% ar,
025¢ is 0.2f 13 Tarz Frarz ’ ’
0.2f 4 E is
E e 0.15F 1S
015E 1a ): i@
E Jui 1F 14
|:|.1E 13 : 1z
0.05F 32 0.05f 12
E Pl jo F Q0
0 blema Kb EEIE 15 0 i3

- pre

Helge Voss

-processing: choose set of linear transformed input variables for which C;; = 0 (i#))
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Da-Correlaiion .

= Find variable transformation that diagonalises the covariance matrix
" Determine square-root C ' of correlation matrix C, i.e., C=C'C"'

=compute C ' by diagonalising C: D=S"CS = C’=S./DS’

" transformation from original (x) in de-correlated variable space (x’) by: x' = C '—1x

Gompanen! Transiormied TVA Input Variaties: varl vur2

0.5 I:HI'Sign'a\ T T T T

Background
i

04F

0.0)%

Normalised 7]
Nermalised [7]

= |2

0.3

0.0)% / (0.2,

0.2

0.1

U/O-flow (S,B): (0.0,
s M A W e W
¥

3
. 2
Va-( -
| — I — — | [[var3 vers [[rar veras
= 7
" 4 a 4
2 2
2 2 2 3
2 2 . H 3
@ ] ES k] i
0
E E o ] ]
=} =} o 2 -
z 2 s 1 1
= -2 -2
5 -2 -2
= -3 -3
1 3 -3
4 -
4| -4
3 2
E

Attention: eliminates only linear correlations!!
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Deacorrelation 2t YWork =

" Example: linear correlated Gaussians - decorrelation works to 100%

—1-D Likelihood on decorrelated sample give best possible performance

écompare also the effect on the MVA-output variable!

correlated variables:

TMVA response for classifier: Likelihood

{1 Signal
8 Background

(1/N) dN / dx

th
RN RSN ERAENDA N

(=3
o
(=1
(=:]

Likelihood response

i\

—

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

after decorrelation

TMVA response for classifier: LikelihoodD

(1/N) dN / dx

® T Signal |

Background

|

0.4

- IIII|IIII|IIII|I||| 1 II|IIII|IIII|IIII|IIII

0.6 0.8
LikelihoodD response

Watch out! Things might look very different for non-linear correlations!

Helge Voss

INFN School of Statistics 2015

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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Lirnitations of ine Decorrelaiion ==

B in cases with non-Gaussian distributions and/or nonlinear correlations,
the decorrelation needs to be treated with care

" How does linear
decorrelation affect
cases where
correlations
between signal and
background differ?

varl varsus varQ (signal)_NeoTransform varl versus varl (background)_MoTransform

IIIIIIIIIIIIIIlIIIIlIIIIIIIIIIIIII IIII+ I'I_|II|IIII.JI.III|IIIIIIIIIIIIIIIIIIIIIII+

varl [ ]
vari

Original correlations

Signal Background



Lirnitations of ine Decorrelaiion ==

B in cases with non-Gaussian distributions and/or nonlinear correlations,
the decorrelation needs to be treated with care

® How does linear

decorrelatlon aﬂ:ect | var versus var0 {signal)_DecorrTransform | var! versus vard (bachground)_DecorrTransform
cases where 545_'"""""""""'"'_i ‘!';.;45'""_
correlations 3t ERE
between signal and 2; E 2p "
background differ? F E b
- 9 - 0F
AE ; AE
2F = 2F
. '32_ N E '32_
SQRT decorrelation 4f E af
5o | | | PR - 5E | | Ll | | 3
-6 -4 -2 0 2 4 -6 -4 -2 1] 2 4
var( var(

Signal Background



Lirnitations of ine Decorrelaiion ==

B in cases with non-Gaussian distributions and/or nonlinear correlations,
the decorrelation needs to be treated with care

® How does linear

decorrelatlon aﬁeCt | varl versus varQ (signal)_MNoTransform |var1 versus varl (background)_NoTransform
strongly nonlinear o AV AL AP T T
>12F" . hk Fi _: :,1_2: L 1
cases ? i3 L
0.8 0.8F
06f" 06}
04F 04f
02f 0.2f
Original correlations oF of
0.2F 0.2F
4L 0A4f
06F 06F

o bl i beaa bl |

-0.80.60.40.2 -0 0.20.40.

111 al IIF _IIIIIIIIII|III|III|IIIIIIIIIIIII 111

08 11214 0.80.60402-002040608 11.21.4
) var( var0

Signal Background




Lirnitations of ine Decorrelaiion ==

B in cases with non-Gaussian distributions and/or nonlinear correlations,
the decorrelation needs to be treated with care

How does linear
decorrelation aﬁect | vari versus wvarl (signal}_DecorrTransform | | varl versus vard (background)_DecorrTransform
Strongly nonlinear Ea55_”“IIIIIIII|””|IIIIIII.”:lll-I_'":\.l.'IIH |.||.||._||_|E EBEE_HlHHI”III““'HHI”III””'IIHI“IIIH_'E
-~ E - ]
cases ? 3f af
25F 25f
2f 2f
155, 15}
1
0.5F 05F
_ of 0F
SQRT decorrelation o5t o5t
| ST T TN To R TR I b e e b
105005 115 2 25 3 105005 115 2 25 3
. var( var(
Signal Background

—>Watch out before you used decorrelation “blindly”!!
9Perhaps “decorrelate” only a subspace!



row o Aooly tne Pre-Processirg
Transiorraiion?
* Correlation (decorrelation): different for signal and background variables

° ® we don’t know beforehand if it is signal or background.
— What do we do?

—>for likelihood ratio, decorrelate signal and background independently

H plf (Xk(ievent))

ke{variables}

S § (I CAOMS I § QA CAOW)

ke{variables} ke{variables}

signal transformation

H X, (ievent)) background transformation
ylt_rans(ievent): S 'l:{vjr/ia. B (B .
H pk (T Xk (Ievent))+ H pk (T Xk(levent))
ke{variables} ke{variables}

—>for other estimators, one needs to decide on one of the two... (or
decorrelate on a mixture of signal and background events)




Deg-Correlation:
Princioal Cornoonent Analysis

= PCA (unsupervised learning algorithm)
= reduce dimensionality of a problem
= find most dominant features in a distribution

= Eigenvectors of covariance matrix = “axis” in transformed variable space
= large eigenvalue - large variance along the axis (principal component)
—> sort eigenvectors according to their eigenvalues
- transform dataset accordingly
— diagonalised covariance matrix with first “variable” = variable with
largest variance

X (lovent) = 20 [ X (ievem ) =%, |-v&, VK & {variables}

\ ve{variables} /_/4 \

Principle Component sample means eigenvector
(PC) of variable k

" Matrix of eigenvectors V obey the relation: C-V =D-V - PCA eliminates correlations!

correlation matrix diagonalised square root of C
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S GHUSSIENNSEUONE

" Improve decorrelation by pre-Gaussianisation of variables

» First: transformation to achieve uniform (flat) distribution:

Xk (ievent)

X (1vent) =/‘j p. (X )dx; , vk e{variables}

//‘

Rarity transform of variable k Measured value PDF of variable k

The integral can be solved in an unbinned way by event counting,
or by creating non-parametric PDFs (see later for likelihood section)

®» Second: make Gaussian via inverse error function: erf \/7 je“ dt

X (ioyent) =2 - €1 (2x (ip\e ) —1) . VK € {variables}

= Third: decorrelate (and “iterate” this procedure)



|Gaussianized and Decorrelated TMVA InputVariabIe:Iug{vz‘ :Iauss| ized and Decorrelated TMVA Input Variable: log(D cl:} | Gaussianized and Decarrelated TMVA Input Variable: FL |
E e ; igignalI ' E E
5 07H774 Background . & . ® U o
2 z E £ E £
) 0.6 < =] < =] 0.8 <
= o = g = " o
0.5 g e e
£ £ 0.6 £
04 s s s
0.3 % % 0.4 A %
0.1 2 K 0.2 7 //./‘) 2
. & - ; :./ &
. g g o bt 77, \RE
-3 -2 -1 1] 1 2 3
FL
Fauss nized ai I’iaussi izes related 'A Input Variable: Ing{IPp' I Gaussianized and Decomelated TMVA Input Variable: ptp I
3 12 3 3
I o ® o o o
E 4 L g £ g £
S s g € o S|
% 0 g 2 : 2 2
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) =3 =3
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22 , 15 i 5
v 12 @ @
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log(IPp) log(IPpi)

We cannot simultaneously “Gaussianise” both signal and background !
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Linear Discrirninzant zine nor linszsr

correlations

assume the following non-linear correlated data:

" the Linear discriminant obviously doesn’t do a very good job here:

" Of course, these can easily be de-
correlated:

—>here: linear discriminator works
perfectly on de-correlated data

1-4:‘_\|||||||‘||||||||||i||‘|||\\‘|‘\|‘ ] Signal
' .| . Eackground

8:!_\I|III|III|III|III|III|I\\|\II|III.IIIIIIII|_|:
-0.8-06-04-02 0 0204 0608 1 1.2 14
varQ

Helge Voss INFN School of Statistics 2015

sqrt(var1*2+var0+2)

—_—
var0' = +/var0? + var1
var QO
varl = atan
varl
L Signal
14 Background
i S
1.2_—
1
o.a:—
0.5:—
0.4
T | | Ll | |
3 2 1 0 1 2 3
atan(varO/var1)
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Lire

@

ar Discrirminant witn Quzclratic input: «« =

" A simple to “quadratic” decision boundary:
" varO
" varl

= varO * varO
® yvarl * varl - guadratic decision boundaries in varO,varl

" varO * varl Performance of Fisher Discriminant

while: — linear decision boundaries in var0O,varl

with quadratic input:

| Signal and background distributions weighted by Fisher output |

E1.4:I_II|III‘\IllIII|I,I‘IJIII|III|II ] Signal g14
C " >
2120 . Background :tg 1.2

I : -
. MVA Fisher
0.8
j %1-01 I‘IIIIIIII\III\III\III\III\IIIII\
0.6 &
0.4F §
E 7]
0.2 .:,_’.
o 50.99
]
=]

Fisher

0.98

_.f||||||||U|||||||||\||\|\|\i

E Fisher les
-0.6:— 0.07
-0.8:ﬂ|||||‘\|||||||||||||||||||||||\ ' FISher llal-hllzllcl'l|6|2II6|4II6|6II6|BIII‘||I'1||2||‘|||4|
-0.8-0.6-04-0.2 0 0.2 0.4 0.6 -4-0. .204060. 2 1.
0.96 Var00
0 \I0I1IIII0-|2IIII | I | I | | | | | 11

sugnal eff

Helge Voss INFN School of Statistics 2015 50



