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Overview 
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Multivariate  classification/regression  algorithms  (MVA) 

 what they are 

 how they work 

 Overview over some classifiers 

 Multidimensional Likelihood  (kNN : k-Nearest Neighbour) 

 Projective Likelihood (naïve Bayes)  

 Linear Classifier 

 Non linear Classifiers 

 Neural Networks 

 Boosted Decision Trees 

 Support Vector Machines 

 General comments about: 

 Overtraining 

 Systematic errors 



Event Classification 
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A linear boundary?  A nonlinear one? Rectangular cuts? 

S 

B 

x1 

x2 S 

B 

x1 

x2 S 

B 

x1 

x2 

 Which model/class  ?  Pro and cons ? 

 Once decided on a class of boundaries, how to find the “optimal” one ?  

Discriminate  Signal  from  Background 

 we have discriminating observed variables x1, x2, …   

 decision boundary to select events of type S ? 

 

Low variance (stable), high bias methods High variance, small bias methods 



Function Estimation: Regression 
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linear?  

x 

f(x) 

x 

f(x) 

x 

f(x) 

 constant ?  non - linear?  

estimate “functional behaviour” from a set of ‘known measurements” ? 

e.g. : photon energy as function “D”-variables  ECAL shower parameters + … 

 seems trivial ?     

what if you have many input variables? 

Cluster Size 

E
n

e
rg

y
 

 seems trivial ?      human brain has very good pattern recognition capabilities! 

 known analytic model (i.e. nth -order polynomial)   Maximum Likelihood Fit)  

 no model ?  
   “draw any kind of curve” and parameterize it?  



Regression  model functional behaviour 
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x 

f(x) 

 Estimate the ‘Functional Value’ 

 From measured parameters 

1-D example 2-D example 

 better known:  (linear) regression  fit a known analytic function  

 e.g. the above 2-D example   reasonable function would be:  f(x) =  ax2+by2+c  

 don’t have a reasonable “model”  ?    need something more general:  

 e.g. piecewise defined splines, kernel estimators, decision trees to approximate  f(x)  

x 
y 

f(x,y) 

events generated according: underlying distribution  

 NOT in order to “fit a parameter”  

 provide prediction of function value f(x) for new measurements x  (where f(x) is not known) 



Event Classification 
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 Each event, if Signal or Background, has “D” measured variables.  

D 

“feature 

 space” 

y(x) 

 

most general form 

y  = y(x);  x D  

x={x1,….,xD}: input variables 

y(x): RD
R: 

 plotting (historamming) 

the resulting y(x) values: 

 Find a mapping from D-dimensional input-observable =”feature” space 

   to one dimensional output   class label  

 



Event Classification 
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 Each event, if Signal or Background, has “D” measured variables.  

D 

“feature 

 space” 

y(B)  0, y(S)  1 

 

 y(x):  “test statistic” in D-dimensional space of input variables 

y(x): Rn
R: 

 distributions of y(x):  PDFS(y) and PDFB(y) 

 overlap of PDFS(y) and PDFB(y)  separation power , purity  

 used to set the selection cut!  

 Find a mapping from D-dimensional input/observable/”feature” space 

 y(x)=const: surface defining the decision boundary. 

efficiency and purity 

to one dimensional output   

 class labels  

 

> cut: signal 

= cut: decision boundary 

< cut: background 

 

y(x): 



Classification ↔ Regression 
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Classification: 

 Each event, if Signal or Background, has “D” measured variables.  

D 

“feature 

 space” 

 

 y(x): RD
R:  “test statistic” 

in D-dimensional space of 

input variables 

 y(x)=const: surface defining 

the decision boundary. 

y(x): RD
R: 

Regression: 

 Each event  has “D” measured variables + one function value  

 (e.g.  cluster shape variables in the ECAL + particles energy) 

 y(x): RD
R   “regression function” 

 y(x)=const    hyperplanes where the 

 target function is constant 

Now, y(x) needs to be build such that it 

best approximates the target, not such  

that it best separates signal from bkg by demanding y(x) > const  

signal and y(x) < const  background 

X1 
X2  

y(x)=f(x1,x2) 



Event Classification 
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S S

S S B B

f PDF (y(x))
P(C S | y(x))

f PDF (y(x)) f PDF (y(x))
 



y(x) 

PDFB(y). PDFS(y):  normalised distribution of y=y(x) 

for background and signal events 

(i.e. the “function” that describes the shape of the 

distribution) 

with y=y(x) one can also say PDFB(y(x)), PDFS(y(x)): : 

 

Probability densities for background and signal 

now let’s assume we have an unknown event from the example above for which  y(x) = 0.2 

 

is the probability of an event with 

measured x={x1,….,xD} that gives y(x) 

to be of type signal 

y(x): Rn
R:  the mapping from the “feature space” (observables) to one output variable  

let fS and fB be the fraction of signal and background events in the sample, then: 

 PDFB(y(x)) = 1.5   and PDFS(y(x)) = 0.45 

 

1.5 

 0.45 

S S

S S B B

f PDF (y)
P(C S | y)

f PDF (y) f PDF (y)
 





Event Classification 
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P(Class=C|x) (or simply P(C|x)) :   probability that the event class is of C, given the 

         measured observables x={x1,….,xD}  y(x)   

P(y | C) P(C)
P(Class = C| y) =

P(y)

Prior probability to observe an event of “class C” 

i.e. the relative abundance of “signal” versus 

“background”   P C = 𝑓𝐶 =
𝑛𝐶

𝑛𝑡𝑜𝑡
 

Overall probability density to observe the actual 

measurement y(x). i.e.  
Classes

P(y) = P(y | Class)P(Class)

Probability density distribution 

according to the measurements x 

and the given mapping function 

Posterior probability 

 It’s a nice “exercise” to show that this application of Bayes’ Theorem 

gives exactly the formula on the previous slide ! 



which one of those 

two blue ones is the better?? 

Receiver Operation Charactersic 

(ROC) curve  

11 Helge Voss INFN School of Statistics 2015 

y(x) 

y(B)  0, y(S)  1 

Signal(H1) /Background(H0)  

discrimination:  

0 1 

1 

0 

1
−
𝛼
 /

1
- 

e b
a

c
k
g

r.
 

 𝟏 − 𝜷 / esignal  

y’(x) 

y’’(x) 

Type-1 error small 

Type-2 error large 

Type-1 error large  

Type-2 error small 

 
 Type 1 error:  reject H0 (i.e. the ‘is bkg’ hypothesis) although it would haven been true  

  background contamination 

  Significance α: background sel. efficiency  1- a: background rejection 

 

 Type 2 error:  accept H0  although false  

  loss of efficiency 

  Power: 1- β signal selection efficiency 



MVA and Machine Learning 
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 Finding y(x) : Rn
R  

given a certain type of model class y(x)   

“fits” (learns) from events with known type the parameters in y(x) 

such that y: 

 CLASSIFICATION: separates well Signal from Background in training data 

 REGRESSION: fits well the target function for  training events 

use for yet unknown events   predictions 

 

  supervised machine learning 

 

 



Event Classification  finding 

the mapping function y(x) 
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Neyman-Persons: 𝒚 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)
 

        p(x|S) and p(x|B) are typically unknown: 

 Neyman-Pearsons lemma doesn’t really help us directly 

 

* hyperplane in the strict sense goes through the origin. Here I mean “affine set” to be precise 

 

 Monte Carlo simulation or in general cases: set of known (already classified) “events” 

 

  Use these “training” events to: 

 

 estimate p(x|S) and p(x|B):  (e.g. the differential cross section folded with the detector 

influences)   and use the likelihood ratio  

 e.g. D-dimensional histogram, Kernel density estimators, … 

(generative algorithms) 

OR 

 find a “discrimination function” y(x)  and corresponding  decision boundary (i.e. 

hyperplane* in the “feature space”: y(x) = const) that optimally separates signal from 

background   

 e.g. Linear Discriminator, Neural Networks, … 

(discriminative algorithms) 

 



Recap: 
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Multivariate Algorithms  combine all ‘discriminating’ measured variables 

into ONE single  “MVA-variable”  y(x):  RD  R 

 

 contains ‘all’ information from the “D”-measurements 

 allows to place ONE final cut 

 corresponding to an (complicated) decision boundary in D-

dimensions 

 may also be used to “weight” events rather than to ‘cut’ them away 

 

 

y(x) is found by 

 estimating the pdfs  and using the likelihood ratio  

 

OR  

 Via training: 

 fitting the free parameters “w” (weights) in some model y(x; w) to 

‘known data’  

 

 

 



Overview 
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Multivariate  classification/regression  algorithms  (MVA) 

 what they are 

 how they work 

 Overview over some classifiers 

 Multidimensional Likelihood  (kNN : k-Nearest Neighbour) 

 Projective Likelihood (naïve Bayes)  

 Linear Classifier 

 Non linear Classifiers 

 Neural Networks 

 Boosted Decision Trees 

 Support Vector Machines 

 General comments about: 

 Overtraining 

 Systematic errors 



K- Nearest Neighbour 
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 estimate probability density P(x) in  D-dimensional space:  
 

 The only thing at our disposal is our “training data” 

 

x1 

x2 

“events” distributed according to P(x) 

“x” 

 For the chosen a rectangular volume  

h 

  Say we want to know P(x) at “this” point “x” 

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events 

 
V 

 K  (from the “training data”)    estimate of average  P(x) in the volume V:   ∫P(x)dx  = K/N  

  V 

 Classification:  Determine  

 PDFS(x) and PDFB(x)  

likelihood ratio as classifier!  

  K-events: 

 

 

 

 

 Kernel Density estimator of the probability density 

1

x x1 1
(x)



- 
  

 

N

n

D
n

P k
N h h

k(u):  is called  

a Kernel function:  
𝐾 𝑥 =   𝑘

𝑥−𝑥𝑛

ℎ

𝑁

𝑛=1
, with 𝑘 𝑢 =  

1, 
0,

𝑢𝑖 ≤
1

2
, 𝑖 = 1…𝐷

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 



Nearest Neighbour and Kernel 

Density Estimator 
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 Regression:  If each events with (x1,x2) carries a “function value” f(x1,x2) (e.g. energy of incident 

particle)     

 

 

i.e.: the average function value 

x1 

x2 

“events” distributed according to P(x) 

“x” 

k(u):  is called  

a Kernel function:  

h 

N
i i

i V

1 ˆk(x x)f(x ) f(x)P(x)dx
N

-  

 K  (from the “training data”)    estimate of average  P(x) in the volume V:   ∫P(x)dx  = K/N  

  V 

 estimate probability density P(x) in  D-dimensional space:  
 

 The only thing at our disposal is our “training data” 

 

 For the chosen a rectangular volume  

  Say we want to know P(x) at “this” point “x” 

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events 

 
V 

  K-events: 

𝐾 𝑥 =   𝑘
𝑥−𝑥𝑛

ℎ

𝑁

𝑛=1
, with 𝑘 𝑢 =  

1, 
0,

𝑢𝑖 ≤
1

2
, 𝑖 = 1…𝐷

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 



Nearest Neighbour and Kernel 

Density Estimator 
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x1 

x2 

“x” 

h 

 determine K from the “training data” with signal and 

background mixed together 

  

x1 

x2 

kNN  : k-Nearest Neighbours 

 relative number events of the various 

classes amongst the k-nearest neighbours 
Sn

y(x)
K



“events” distributed according to P(x) 
 estimate probability density P(x) in  D-dimensional space:  
 

 The only thing at our disposal is our “training data” 

 

 For the chosen a rectangular volume  

  Say we want to know P(x) at “this” point “x” 

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events 

 
V 

  K-events: 

 Kernel Density Estimator: replace “window” by “smooth” 

kernel function  weight events by distance (e.g. via 

Gaussian) 

  



Kernel Density Estimator 
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 h: “size” of the Kernel     “smoothing parameter” 

 

 chosen size of the “smoothing-parameter”  more 

important than kernel function 

(Christopher M.Bishop) 

 h too small:  overtraining 

 h too large:  not sensitive to features in P(x)  

 a drawback of Kernel density estimators: 

Evaluation for any test events involves ALL TRAINING DATA  typically very time consuming 

 

1

1
nP( ) ( )



 x x - x
N

h

n

K
N

:  a general probability density estimator using kernel K 

 which metric for the Kernel (window)? 

 normalise all variables to same range 

 include correlations ?  

 Mahalanobis Metric:   x*x  xV-1x 

 



“Curse of Dimensionality” 
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Bellman, R. (1961), Adaptive 

Control Processes: A Guided 

Tour, Princeton University Press.  

Shortcoming of nearest-neighbour strategies: 

  higher dimensional cases   K-events often are not in 

a small “vicinity” of the space point anymore: 

1/edgelength=(fraction of volume) D

consider: total phase space volume V=1D 

               for a cube of a particular fraction of the volume: 

 10 dimensions:  capture 1% of the phase space 

   63% of range in each variable necessary    that’s not “local” anymore..  

 

We all know:  

 Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due 

to lack of Monte Carlo events. 

 develop all the alternative classification/regression techniques 



Naïve Bayesian Classifier  

(projective Likelihood Classifier) 
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Multivariate Likelihood (k-Nearest Neighbour)  

  estimate the full D-dimensional joint probability density 

If correlations between variables are weak:  
D

i

i 0

P( ) P( )


 x x

 

  

event

event

event

variables

vari

signa

a

,

PDE

b s

,

l

k

,

l

e

P (x )

( )

P (x )






 
  
 



 

i

C

C

i

i

i i

cla s i

k

k

sse

y x

discriminating variables 

Classes: signal, 

background types 

Likelihood ratio 

for event event 

PDFs 

One of the first and still very popular MVA-algorithm in HEP 

 No hard cuts  on individual variables,  

 allow for some “fuzzyness”: one very signal like variable may 

counterweigh another less signal like variable 

optimal method if correlations == 0  (Neyman Pearson Lemma) 

 try to “eliminate” correlations  e.g. linear de-correlation  PDE introduces fuzzy logic 

product of marginal PDFs 

(1-dim “histograms”) 



Naïve Bayesian Classifier  

(projective Likelihood Classifier) 
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 Where to get the PDF’s ? 
Simple histograms   

 

Smoothing  (e.g. spline or kernel 

function)    



Overview 
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Multivariate  classification/regression  algorithms  (MVA) 

 what they are 

 how they work 

 Overview over some classifiers 

 Multidimensional Likelihood  (kNN : k-Nearest Neighbour) 

 Projective Likelihood (naïve Bayes)  

 Linear Classifier 

 Non linear Classifiers 

 Neural Networks 

 Boosted Decision Trees 

 Support Vector Machines 

 General comments about: 

 Overtraining 

 Systematic errors 



Classifier Training and Loss-Function 

24 

 Discriminative algorithms:  

 No PDF estimation 

 

 But fit a “decision boundary” directly: i.e. 

 

    provide a set of “basis” functions ℎ𝑖 (“a model”): 

     𝑦 𝑥 = ∑𝑤𝑖ℎ𝑖(𝑥)  
 

 adjust parameters 𝑤𝑖   

 optimally separating hyperplane (surface)  “training” 

 

INFN School of Statistics 2015 Helge Voss 



Linear Discriminant 
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i.e.  any linear function of the input variables:    linear decision boundaries  

H1 

H0 

x1 

x2 

Linear Discriminant: 

INFN School of Statistics 2015 

General: 

 PDF of the test statistic y(x) 

 determine the “weights” w that separate “best” 

PDFS from PDFB 

Helge Voss 

𝑦 𝑥 = 𝑥1, … , 𝑥𝐷 =  𝑤𝑖ℎ𝑖(𝑥)

𝑀

𝑖=0

 

𝑦 𝑥 = 𝑥1, … , 𝑥𝐷 = 𝑤0 +  𝑤𝑖𝑥𝑖

D

𝑖=1

 



Fisher’s Linear Discriminant 
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determine the “weights” w that do “best” 

y 

Maximise “separation” between the S and B  

 

 minimise overlap of the distributions of yS and yB  

maximise the distance between the two mean 

values of the classes 

minimise the variance within each class 

yS 
yB 

 maximise  

note: these quantities can be calculated from the training data 

the Fisher coefficients 

INFN School of Statistics 2015 Helge Voss 

𝑦 𝑥 = 𝑥1, … , 𝑥𝐷 = 𝑦(𝐱,𝐰) = 𝑤0 +  𝑤𝑖𝑥𝑖

D

𝑖=1

 

𝐽 𝑤 =  
𝐸 𝑦𝐵 −𝐸[𝑦𝑆]

2

𝜎𝑦𝐵 
2 +𝜎𝑦𝑆

2 =
𝑤𝑇𝐵𝑤

𝑤𝑇𝑊𝑤
=

"in between" variance
"within" variance 

  

∇𝑤 𝐽 𝑤 = 0 ⇒ 𝑤 ∝ 𝑊−1( 𝑥 𝑆 − 𝑥 𝐵)    



Classifier Training and Loss-Function 
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More general:  rather than:  maximize 𝐽 𝑤   constructed “by hand”    

 minimize a the expectation value of a “Loss function”  𝐿(𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦 𝑥 )  

which penalizes prediction errors for training events 

regression:   𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 = the functional value of training event 𝑖 which 

   happens to have the measured observables 𝑥𝑖 

classification:      𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 =1 for signal, =0 (-1) background   

What to choose for 𝐿(𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑦 𝑥 ) ?      

• Regression: 

𝐸[𝐿] = 𝐸 (𝑦𝑡𝑟𝑎𝑖𝑛−𝑦 𝑥 
2
]     squared error loss (regression) 

• Classification: 

𝐸 𝐿 = 𝐸[𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 )     binomial loss 

INFN School of Statistics 2015 Helge Voss 



Classifier Training and Loss-Function 
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• Regression: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 : Gaussian distributed around a mean value 

• Remember: Maximum Likelihood estimatior (Tuesday by Glen Cowan) 

Maximise: log probability of the observed training data:    

log 𝐿 = log  𝑃 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦(𝑥𝑖)

𝑒𝑣𝑒𝑛𝑡𝑠

𝑖

 =  log (𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 )

𝑒𝑣𝑒𝑛𝑡𝑠

𝑖

=   𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 − 𝑦 𝑥𝑖

2
𝑒𝑣𝑒𝑛𝑡𝑠

𝑖

 

𝐸[𝐿] = 𝐸 (𝑦𝑡𝑟𝑎𝑖𝑛−𝑦 𝑥 
2
]     squared error loss (regression) 

• Classification: now:  𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 (i.e. is it ‘signal’ or ‘background’) is  Bernoulli distributed 

log 𝐿 =  log (𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 )

𝑒𝑣𝑒𝑛𝑡𝑠

𝑖

=  log (𝑃 𝑆 𝑥𝑖
𝑦𝑖
𝑡𝑟𝑎𝑖𝑛

𝑃 𝐵 𝑥𝑖
1−𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 )

𝑖

 

If we now say y(x) should simply parametrize P(S|x); P(B|x)=1-P(B|x)   

𝐸 𝐿 = 𝐸[𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 )     binomial loss 
INFN School of Statistics 2015 Helge Voss 



Logistic Regression* 
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*Actually, although called ‘regression’ it is a ‘classification’ algorithm! 

Fisher Discriminant:  

 equivalent to Linear Discriminant with ‘squared loss function’ 

 Ups: didn’t we just show that “classification” would naturally use 

‘binomial loss function” ? 

 

 O.k. let’s build a linear classifier that maximizes ‘binomial loss’: 

 For y(x) to parametrize P(S|x), we clearly cannot ‘use a linear 

function for ‘y(x)’ 

 But we can ‘squeeze’ any linear function 𝑤0 + ∑𝑤𝑗𝑥
𝑗 = Wx  into the 

proper interval  0 ≤ 𝑦(𝑥) ≤ 1 using the ‘logistic function’ (i.e. sigmoid 

function) 

 

 𝑦 𝑥 = 𝑃 𝑆 𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊𝑥 =  
1

1+𝑒−𝑊𝑥  

 𝐿𝑜𝑔 𝑂𝑑𝑑𝑠 = 𝐿𝑜𝑔
𝑃 𝑆 𝑥

𝑃 𝐵 𝑥
= 𝑊𝑥   is linear!  

Logistic Regression 

Note: Now y(x) has a ‘probability’ interpretation. y(x) of the Fisher discriminant was ‘just’ a 

discriminator. 



Neural Networks 
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for “arbitrary” non-linear decision boundaries  y(x)  non-linear function 

 Think of hk(x) as a set of “basis” functions 

 If h(x) is sufficiently general (i.e. non linear), a linear 

combination of “enough” basis function should allow to 

describe any possible discriminating function y(x) 

Imagine you chose do the following: 

there are also mathematical proves for  this statement. 

Ready is the Neural Network 

Now we “only” need to find the appropriate “weights” w  

1
A(x)= :

1+e

the sigmoid function

-x

A non linear (sigmoid) function of 

 a linear combination of 

     non linear function(s) of 

    linear combination(s) of 

    the input data 

hi(x) 
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𝑦 𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  𝑤𝑘ℎ𝑘(𝑥 )

𝑀

𝑘

 

𝑦 𝑥 =                                𝑤𝑘0 + 𝑤𝑘𝑗𝑥𝑗

𝐷

𝑗=1

 𝑦 𝑥 =            𝑤𝑘  𝐴 𝑤𝑘0 + 𝑤𝑘𝑗𝑥𝑗

𝐷

𝑗=1

𝑀

𝑘

 𝑦 𝑥 =                         𝐴 𝑤𝑘0 + 𝑤𝑘𝑗𝑥𝑗

𝐷

𝑗=1

 𝑦 𝑥 =    𝐴  𝑤𝑘  𝐴 𝑤𝑘0 + 𝑤𝑘𝑗𝑥𝑗

𝐷

𝑗=1

𝑀

𝑘

 



Neural Networks: 

Multilayer Perceptron MLP 
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But before talking about the weights, let’s try to “interpret” the formula as a Neural Network: 

 Nodes in hidden layer represent the “activation functions” whose arguments are linear 

combinations of input variables  non-linear response to the input 

 The output is a linear combination of the output of the activation functions at the internal nodes 

 It is straightforward to extend this to “several” input layers 

 Input to the layers from preceding nodes only  feed forward network (no backward loops) 

  input layer hidden layer ouput layer 

output: 

Dvar 
discriminating 
input variables 
as input  
+ 1 offset  

1

( ) 1 xA x e
-

- 

“Activation” function 
e.g. sigmoid: 
 
 
 
or tanh 
or … 

M

0i i0 ij j
i j=1

y(x)= w A w + w x
 

 
 

 
D

1 

i 

. . . 

D 

1 

j 

M1 

. . . 

11w

ijw

1 jw. . . 
. . . 

k 

. . . 

1jw

D+1 
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Neural Networks:  

Multilayer Perceptron MLP 
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 try to “interpret” the formula as a Neural Network: 

nodesneurons 

links(weights)synapses 

Neural network: try to simulate reactions of 

a brain to certain stimulus (input data) 

  input layer hidden layer ouput layer 

output: 

Dvar 
discriminating 
input variables 
as input  
+ 1 offset  

1

( ) 1 xA x e
-

- 

“Activation” function 
e.g. sigmoid: 
 
 
 
or tanh 
or … 

M

0i i0 ij j
i j=1

y(x)= w A w + w x
 

 
 

 
D

1 

i 

. . . 

D 

1 

j 

M1 

. . . 

11w

ijw

1 jw. . . 
. . . 

k 

. . . 

1jw

D+1 
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Neural Network Training 

33 

Now we just need to fix the parameters by ?    Minimizing  Loss function:   

 

where 

 y(x):  very “wiggly” function  many local minima.    

one global overall fit not efficient/reliable  

i.e. use usual “sum of squares”  

 

true  predicted 

INFN School of Statistics 2015 Helge Voss 

𝐿 𝑤 =  𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 − 𝑦 𝑥𝑖

2
𝑒𝑣𝑒𝑛𝑡𝑠

𝑖

 

𝐿 𝑤 =   𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log (1 − 𝑦 𝑥𝑖 )

𝑒𝑣𝑒𝑛𝑡𝑠

𝑖

 

𝑦𝑡𝑟𝑎𝑖𝑛 =  
1, 𝑠𝑖𝑔𝑛𝑎𝑙
 0, 𝑏𝑎𝑐𝑘𝑔𝑟

 

classification: Binomial loss  



Back-propagation 
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back propagation ( nice recursive formulation of the gradient 
𝜕𝐿

𝜕𝑤𝑖𝑗
 using ‘chain rule’) 

(Stochastic) gradient decent: update weights ‘along the gradient’ at each training step 

𝑤𝑖𝑗  →   𝑤𝑖𝑗 − 𝜂 
𝜕𝐿

𝜕𝑤𝑖𝑗
;     𝜂 = learning rate  

 online learning:          update event by event   

 (mini) batch learning: update after seeing the whole (parts of the) sample 

     

Simple “gradient” is typically not the most effective function minimizer: 

 Use function curvature (“hessian” matrix)  à la Newton method 

 “Momentum”  - accelerate the learning when gradient direction stays 

‘constant’  e.g.: 

 

 𝑣 → 𝜇𝑣 − 𝜂𝛻𝐿     ;    𝑤𝑖𝑗 → 𝑤𝑖𝑗 + 𝑣      (classical momentum) 

 

 



Gradient Descent 
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What is “Deep Learning” 
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Neural networks with ‘many hidden layers’ 

 Learn a hierarchy of features:  i.e. successive layers learn:  4-vectors 

 invariant masses  decays) 

 Used to be ‘impossible to train’  vanishing gradient problem 

 

 Enormous progress in recent years 

 Layerwise pre-training using ‘auto-encoders’ or ‘restricted-

Boltzman machines’ 

 ‘intelligent’ random weight initialisation 

 Stochastic gradient decent with ‘momentum’ 

 ‘new’  activation functions: 



Summary 

37 

Multivariate Algorithms are a powerful alternative to “classical cuts” 

that: 

 

 Do not use hard selection criteria (cuts) on each individual 

observables 

 Look at all observables “together”  

 eg. combining them  into 1 variable   

 

 Mulitdimensional Likelihood  PDF in D-dimensions 

 Projective Likelihood (Naïve Bayesian)  PDF in D times 1 

dimension 

 Be careful  about  correlations 

  

 Linear classifiers :   y(x) = ‘linear combination of observables “x” ’ 

  decision boundary (y(x) = const) is a linear hyperplane 

 

 Non-linear classifier:  Neural networks   any kind of hyperplane 
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What if there are correlations? 
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Typically correlations are present:  Cij=cov[ xi , x j ]=E[ xi xj ]−E[ xi ]E[ xj ]≠0  (i≠j) 

 pre-processing:  choose set of linear transformed input variables for which Cij = 0 (i≠j) 



De-Correlation 
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Attention: eliminates only linear correlations!! 

 Determine square-root C  of correlation matrix C, i.e., C = C C  

compute C  by diagonalising C: 

 transformation from original (x) in de-correlated variable space (x) by: x = C -1x  

 

    T TD S SSSC C D  

 Find variable transformation that diagonalises the covariance matrix 



Decorrelation at Work 
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Example: linear correlated Gaussians  decorrelation works to 100% 

1-D Likelihood on decorrelated sample give best possible performance 

compare also the effect on the MVA-output variable! 

correlated variables:                                               after decorrelation 

Watch out! Things might look very different for non-linear correlations! 



Limitations of the Decorrelation 
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in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care 

 How does linear 

decorrelation affect  

cases where 

correlations 

between signal and 

background differ? 

Original correlations 

Signal Background 



Limitations of the Decorrelation 
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in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care 

 How does linear 

decorrelation affect  

cases where 

correlations 

between signal and 

background differ? 

SQRT decorrelation 

Signal Background 



Limitations of the Decorrelation 
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in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care 

 How does linear 

decorrelation affect 

strongly nonlinear 

cases ? 

Original correlations 

Background Signal 



Limitations of the Decorrelation 
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in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care 

 How does linear 

decorrelation affect 

strongly nonlinear 

cases ? 

SQRT decorrelation 

Watch out before you used decorrelation “blindly”!! 

Perhaps “decorrelate” only a subspace! 

Background Signal 



How to Apply the Pre-Processing 

Transformation? 
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• Correlation (decorrelation): different  for signal and background variables 

•   we don’t know beforehand if it is signal or background.    

 What do we do? 

 

for likelihood ratio, decorrelate signal and background independently 

 

for other estimators, one needs to decide on one of the two… (or 

decorrelate on a mixture of signal and background events) 

 
 
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signal transformation 

background transformation 



De-Correlation:  

Principal Component Analysis 

46 Helge Voss INFN School of Statistics 2015 

   
 

 PC ( )

event event

variables

variab   , lesk

k v v v

v

kix x vi x


  -    

Principle Component 

(PC) of variable k 

sample means eigenvector 

C V D V   Matrix of eigenvectors V obey the relation:                         PCA eliminates correlations! 

correlation matrix diagonalised square root of C 

 PCA    (unsupervised learning algorithm) 

 reduce dimensionality of a problem 

 find most dominant features in a distribution 

 

 Eigenvectors of covariance matrix  “axis” in transformed variable space 

 large eigenvalue  large variance along the axis  (principal component) 

 sort eigenvectors according to their eigenvalues 

 transform dataset accordingly 

 diagonalised covariance matrix with first “variable”  variable with 

largest variance 



 Improve decorrelation by pre-Gaussianisation of variables 

First:  transformation to achieve uniform (flat) distribution:    

   
 

 
event

eve

fl

nt

at variabl   , es
kx

k k

i

k kix p x kx d
-

  

Rarity transform of variable k Measured value PDF of variable k 

Second: make Gaussian via inverse error function:  

      Gauss 1 fl

event even

a

t

t 2 erf 2 1   var iables,k ki i kx x-  - 

 
2

0

2
erf

x

te tx d


- 

 The integral can be solved in an unbinned way by event counting,                                       

or by creating non-parametric PDFs (see later for likelihood section) 

Third: decorrelate   (and “iterate” this procedure) 

“Gaussian-isation“ 
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Original Signal - Gaussianised 

We cannot simultaneously “Gaussianise” both signal and background !  

Background - Gaussianised 

“Gaussian-isation“ 
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Linear Discriminant and non linear 

correlations 
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assume the following non-linear correlated data: 

 the Linear discriminant obviously doesn’t do a very good job here: 

Of course, these can easily be de-

correlated: 

here: linear discriminator works 

perfectly on de-correlated data 

l 2 2

|

var 0 var 0 var1

var 0
var1 a tan

var1

 

 
  

 
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Linear Discriminant with Quadratic input: 
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A simple to “quadratic” decision boundary: 

 var0 * var0 

 var1 * var1 

 var0 * var1 

 quadratic decision boundaries in  var0,var1 

 Performance of Fisher Discriminant: 

 linear decision boundaries in  var0,var1 

 

while: 

 

 var0 

 var1 

Performance of Fisher Discriminant 

with quadratic input: 

Fisher 

Fisher with decorrelated variables 

Fisher with quadratic input 
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