

Multivariate Discriminators

INFN School of Statistics 2015 Ischia (Napoli, Italy)



MAX-PLANCK-INSTITUT FÜR KERNPHYSIK IN HEIDELBERG

<u>Verviev</u>O

Multivariate classification/regression algorithms (MVA)

- what they are
- how they work
- Overview over some classifiers
 - Multidimensional Likelihood (kNN : k-Nearest Neighbour)
 - Projective Likelihood (naïve Bayes)
 - Linear Classifier
 - Non linear Classifiers
 - Neural Networks
 - Boosted Decision Trees
 - Support Vector Machines
- General comments about:
 - Overtraining
 - Systematic errors

Helge Voss

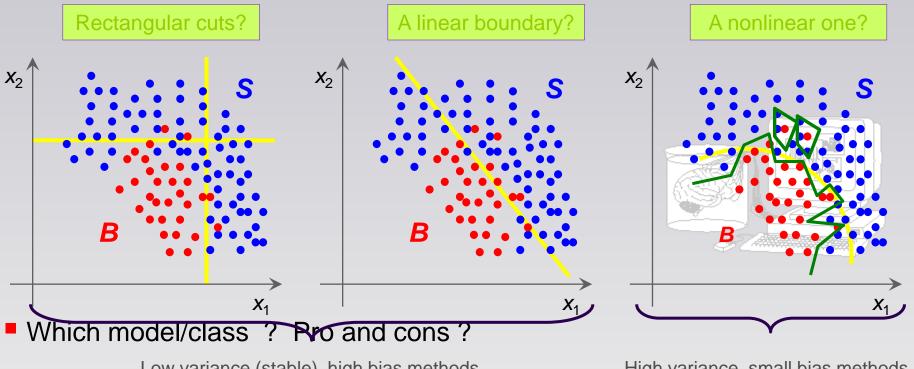
INFN School of Statistics 2015

Event Classification

Discriminate Signal from Background

• we have discriminating observed variables x_1, x_2, \ldots

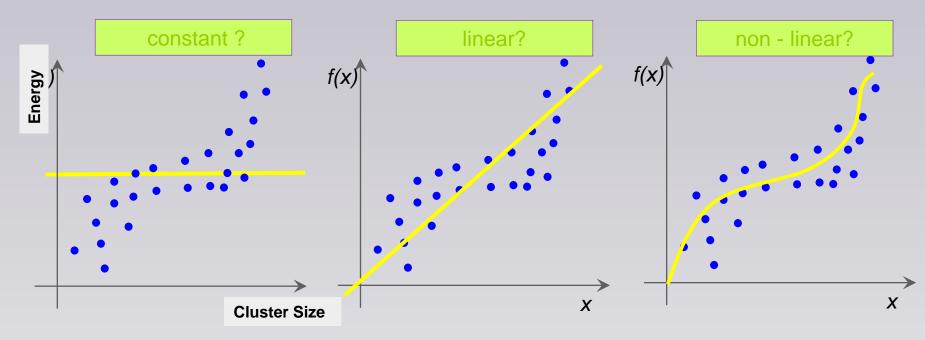
 \rightarrow decision boundary to select events of type S?



Low variance (stable), high bias methods High variance, small bias methods Once decided on a class of boundaries, how to find the "optimal" one ?

Function Estimation: Regression

estimate "functional behaviour" from a set of 'known measurements" ?
e.g. : photon energy as function "D"-variables ECAL shower parameters + ...



known analytic model (i.e. nth -order polynomial)
Maximum Likelihood Fit)
no model ?

"draw any kind of curve" and parameterize it?

■ seems trivial ? → human brain has very good pattern recognition capabilities!

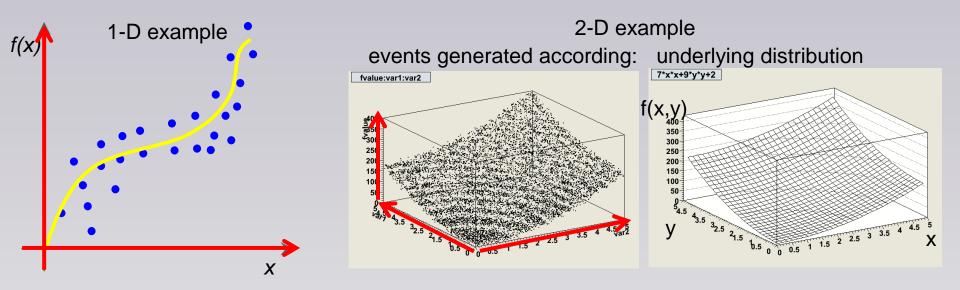
what if you have many input variables?

Helge Voss

INFN School of Statistics 2015

Regression -> model functional behaviour

- Estimate the 'Functional Value'
- From measured parameters

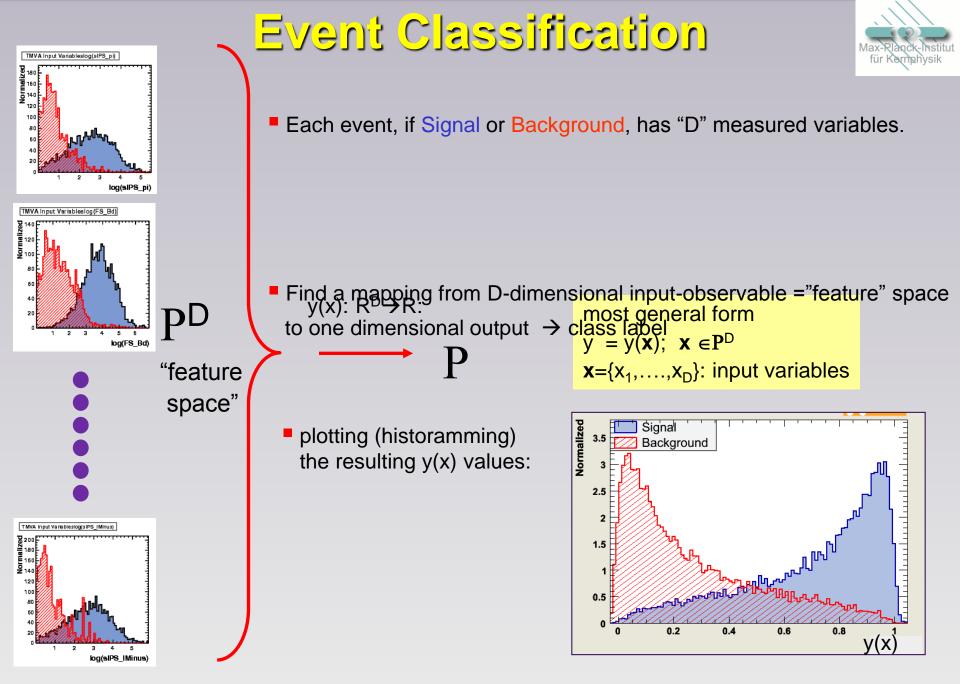


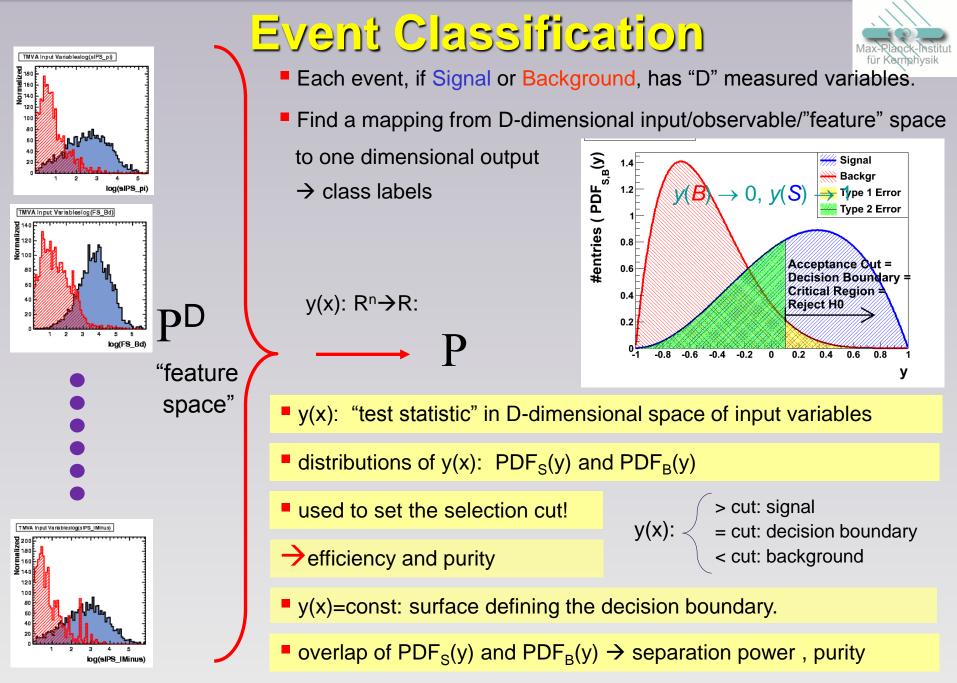
• better known: (linear) regression \rightarrow fit a known analytic function

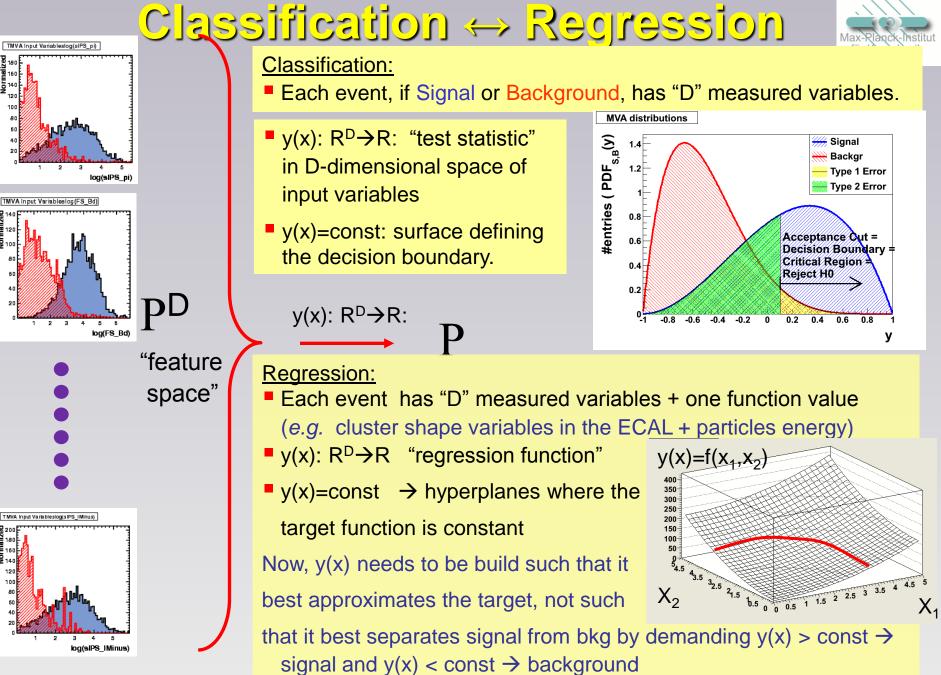
• e.g. the above 2-D example \rightarrow reasonable function would be: $f(x) = ax^2+by^2+c$

• don't have a reasonable "model" ? \rightarrow need something more general:

- *e.g.* piecewise defined splines, kernel estimators, decision trees to approximate f(x)
- → NOT in order to "fit a parameter"
- \rightarrow provide prediction of function value f(x) for new measurements x (where f(x) is not known)

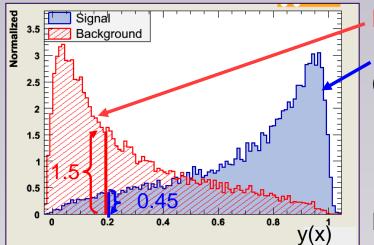






Event Classification

y(x): $R^n \rightarrow R$: the mapping from the "feature space" (observables) to one output variable



PDF_B(y). PDF_S(y): normalised distribution of y=y(x) for background and signal events (i.e. the "function" that describes the shape of the distribution)

with y=y(x) one can also say $PDF_B(y(x))$, $PDF_S(y(x))$:

Probability densities for background and signal

now let's assume we have an unknown event from the example above for which y(x) = 0.2

 $\rightarrow PDF_B(y(x)) = 1.5$ and $PDF_S(y(x)) = 0.45$

let f_s and f_B be the fraction of signal and background events in the sample, then:

 $\frac{f_{_{\mathrm{S}}}\mathsf{PDF}_{_{\mathrm{S}}}(y)}{f_{_{\mathrm{S}}}\mathsf{PDF}_{_{\mathrm{S}}}(y) + f_{_{\mathrm{B}}}\mathsf{PDF}_{_{\mathrm{B}}}(y)} = \mathsf{P}(\mathsf{C} = \mathsf{S} \mid y)$

is the probability of an event with measured $\mathbf{x} = \{x_1, \dots, x_D\}$ that gives y(x)to be of type signal

Event Classification

 $P(Class=C|\mathbf{x})$ (or simply $P(C|\mathbf{x})$) : probability that the event class is of C, given the measured observables $\mathbf{x} = \{x_1, \dots, x_D\} \rightarrow \mathbf{y}(\mathbf{x})$

Probability density distribution according to the measurements **x** and the given mapping function

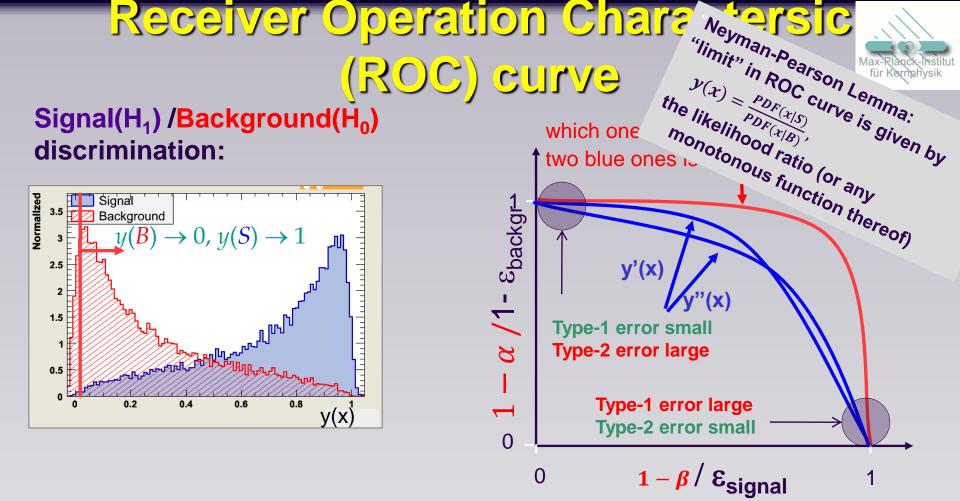
Prior probability to observe an event of "class C" *i.e.* the relative abundance of "signal" versus "background" $\rightarrow P(C) = f_C = \frac{n_C}{n_{tot}}$ $P(Class = C | y) = \frac{P(y | C) \Box P(C)}{P(y)}$ Overall probability density to observe the actual measurement y(x). *i.e.* $P(y) = \sum P(y | Class)P(Class)$

Classes

It's a nice "exercise" to show that this application of Bayes' Theorem gives exactly the formula on the previous slide !

Helge Voss

Posterior probability



• Type 1 error: reject H₀ (i.e. the 'is bkg' hypothesis) although it would haven been true

- → background contamination
- Significance α : background sel. efficiency 1α : background rejection

Type 2 error: accept H₀ although false

- \rightarrow loss of efficiency
- Power: 1- β signal selection efficiency INFN School of Statistics 2015

gninnsel enidosM bns AVM

- Finding $y(x) : \mathbb{R}^n \rightarrow \mathbb{R}$
 - given a certain type of model class y(x)
 - "fits" (learns) from events with known type the parameters in y(x) such that y:
 - CLASSIFICATION: separates well Signal from Background in training data
 - REGRESSION: fits well the target function for training events
 - \Rightarrow use for yet unknown events \rightarrow predictions
 - → supervised machine learning

Event Classification -> finding the mapping function y(x)

- Neyman-Persons: $y(x) = \frac{PDF(x|S)}{PDF(x|B)}$
- (x|S) and p(x|B) are typically unknown:
- → Neyman-Pearsons lemma doesn't really help us directly
 - Monte Carlo simulation or in general cases: set of known (already classified) "events"
- Use these "training" events to:

estimate p(x|S) and p(x|B): (e.g. the differential cross section folded with the detector influences) and use the likelihood ratio

 \rightarrow e.g. D-dimensional histogram, Kernel density estimators, ...

→(generative algorithms)

<u>OR</u>

find a "discrimination function" y(x) and corresponding decision boundary (i.e. hyperplane* in the "feature space": y(x) = const) that optimally separates signal from background

 \rightarrow e.g. Linear Discriminator, Neural Networks, ...

 \rightarrow (discriminative algorithms)

* hyperplane in the strict sense goes through the origin. Here I mean "affine set" to be precise

Recap:

Multivariate Algorithms \rightarrow combine all 'discriminating' measured variables into ONE single "MVA-variable" y(x): R^D \rightarrow R

contains 'all' information from the "D"-measurements

- → allows to place ONE final cut
 - corresponding to an (complicated) decision boundary in Ddimensions

→ may also be used to "weight" events rather than to 'cut' them away

y(x) is found by

estimating the pdfs and using the likelihood ratio

OR

 \rightarrow Via training:

→ fitting the free parameters "w" (weights) in some model y(x; w) to 'known data'

WeivrevO

- Multivariate classification/regression algorithms (MVA)
 - what they are
 - how they work
- Overview over some classifiers
 - Multidimensional Likelihood (kNN : k-Nearest Neighbour)
 - Projective Likelihood (naïve Bayes)
 - Linear Classifier
 - Non linear Classifiers
 - Neural Networks
 - Boosted Decision Trees
 - Support Vector Machines
- General comments about:
 - Overtraining
 - Systematic errors

Helge Voss

INFN School of Statistics 2015

K- Nearest Neighbour

- estimate probability density P(x) in D-dimensional space:
- The only thing at our disposal is our "training data"
- Say we want to know P(x) at "this" point "x"
- One expects to find in a volume V around point "x" N*JP(x)dx events from a dataset with N events
- For the chosen a rectangular volume
 → K-events:

$$x_2$$
 h x_2 h x_1

$$K(x) = \sum_{n=1}^{N} k\left(\frac{x-x_n}{h}\right), \text{ with } k(u) = \begin{cases} 1, & |u_i| \le \frac{1}{2}, i = 1 \dots D\\ 0, & otherwise \end{cases}$$

k(u): is called a Kernel function:

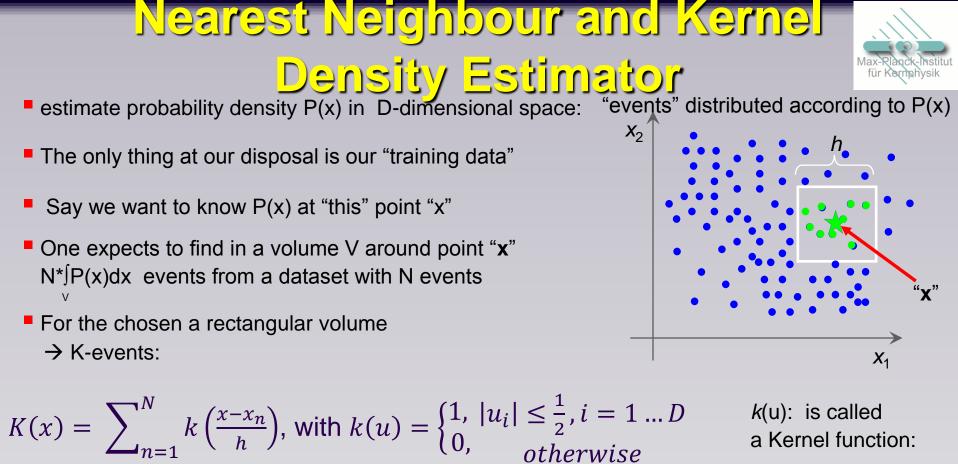
• K (from the "training data") \rightarrow estimate of average P(x) in the volume V: $\int P(x)$

<u>Classification</u>: Determine
 PDF_S(x) and PDF_B(x)
 →likelihood ratio as classifier!

$$P(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} k \left(\sum_{n=1}^{N} \frac{1}{h^{D}} k \right)$$

$$\int_{V}^{P(x)dx} = K/N$$
$$\left(\frac{X - X_{n}}{h}\right)$$

 \rightarrow Kernel Density estimator of the probability density



a Kernel function:

 $\int P(x) dx = K/N$ • K (from the "training data") \rightarrow estimate of average P(x) in the volume V:

If each events with (x_1, x_2) carries a "function value" $f(x_1, x_2)$ (e.g. energy of incident Regression: particle) \rightarrow $\frac{1}{N}\sum_{i=1}^{N} k(\bar{x}^{i} - \bar{x})f(\bar{x}^{i}) = \int_{\Omega} \hat{f}(\bar{x})P(\bar{x})d\bar{x} \qquad \text{i.e.: the average function value}$

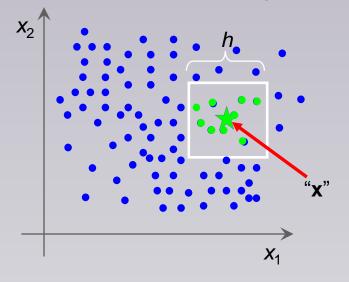
Nearest Neighbour and Kernel

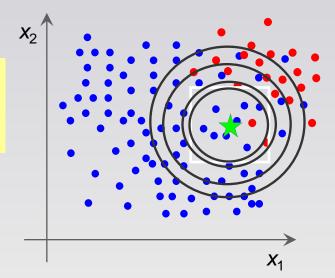
- Density Estimate probability density P(x) in D-dimensional space:
- The only thing at our disposal is our "training data"
- Say we want to know P(x) at "this" point "x"
- One expects to find in a volume V around point "x" N*JP(x)dx events from a dataset with N events
- For the chosen a rectangular volume
 → K-events:
- determine K from the "training data" with signal and background mixed together

kNN : k-Nearest Neighbours relative number events of the various classes amongst the k-nearest neighbours

$$y(\mathbf{x}) = \frac{\mathbf{n}_{S}}{\mathbf{K}}$$

 Kernel Density Estimator: replace "window" by "smooth" kernel function → weight events by distance (e.g. via Gaussian)





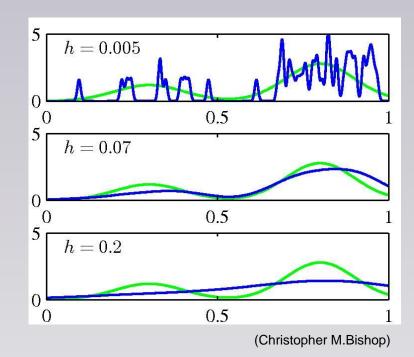
Helge Voss

Kernel Density Estimator

$$\mathsf{P}(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} K_{h}(\mathbf{x} - \mathbf{x}_{n})$$

: a general probability density estimator using kernel K

- h: "size" of the Kernel \rightarrow "smoothing parameter"
- chosen size of the "smoothing-parameter" → more important than kernel function
- h too small: overtraining
- h too large: not sensitive to features in P(x)
- which metric for the Kernel (window)?
 - normalise all variables to same range
 - include correlations ?
 - Mahalanobis Metric: $x^*x \rightarrow xV^{-1}x$
- a drawback of Kernel density estimators:
- Evaluation for any test events involves ALL TRAINING DATA → typically very time consuming



Bellman, R. (1961), Adaptive

We all know:

Control Processes: A Guided Tour, Princeton University Press.

to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies:

a small "vicinity" of the space point anymore:

INFN School of Statistics 2015

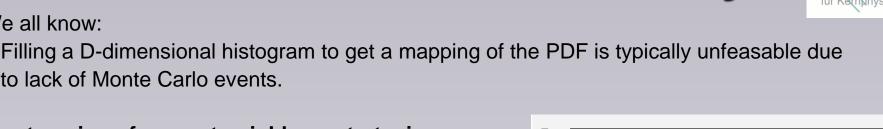
consider: total phase space volume V=1^D for a cube of a particular fraction of the volume:

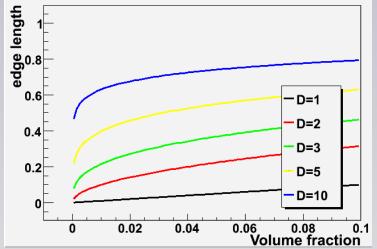
higher dimensional cases K-events often are not in

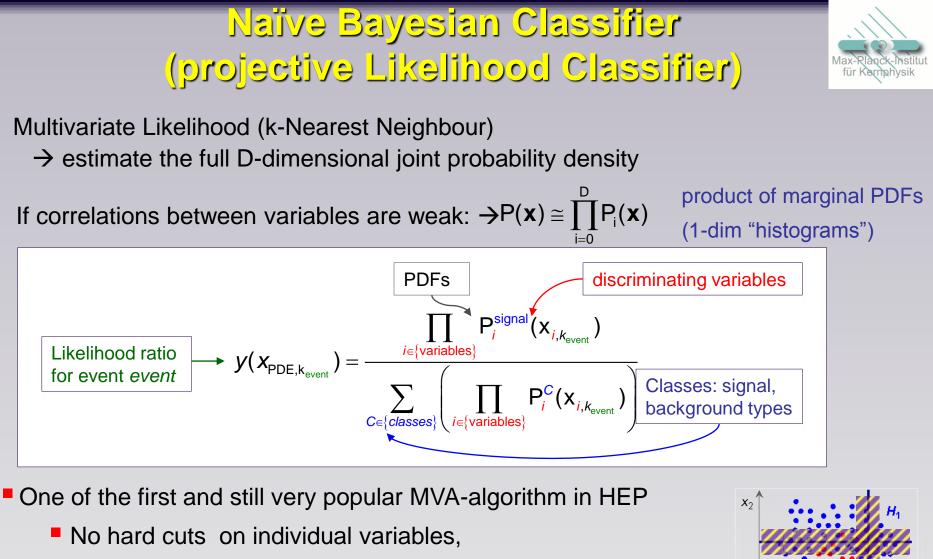
edge length= $(fraction of volume)^{1/D}$

10 dimensions: capture 1% of the phase space \rightarrow 63% of range in each variable necessary \rightarrow that's not "local" anymore.. \otimes

 \rightarrow develop all the alternative classification/regression techniques







allow for some "fuzzyness": one very signal like variable may counterweigh another less signal like variable

optimal method if correlations == 0 (Neyman Pearson Lemma)

• try to "eliminate" correlations \rightarrow e.g. linear de-correlation

Helge Voss

PDE introduces fuzzy logic

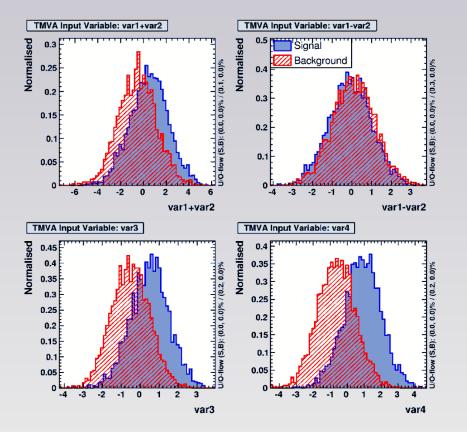
 X_1

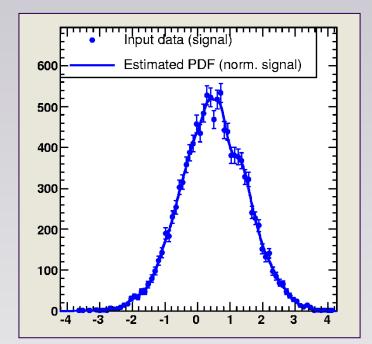
Naïve Bayesian Classifier (projective Likelihood Classifier)

Where to get the PDF's ?

Simple histograms

Smoothing (e.g. spline or kernel function)





WeivrevO

- Multivariate classification/regression algorithms (MVA)
 - what they are
 - how they work
- Overview over some classifiers
 - Multidimensional Likelihood (kNN : k-Nearest Neighbour)
 - Projective Likelihood (naïve Bayes)
 - Linear Classifier
 - Non linear Classifiers
 - Neural Networks
 - Boosted Decision Trees
 - Support Vector Machines
- General comments about:
 - Overtraining
 - Systematic errors

Helge Voss

INFN School of Statistics 2015

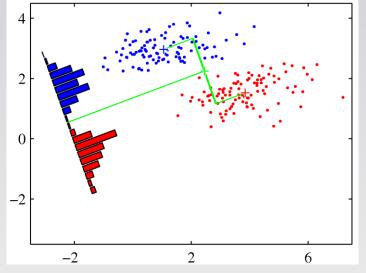
Classifier Training and Loss-Function

- Discriminative algorithms:
 - No PDF estimation
 - But fit a "decision boundary" directly: i.e.
 - → provide a set of "basis" functions h_i ("a model"):
 - $\rightarrow y(x) = \sum w_i h_i(x)$
 - adjust parameters w_i
 - \rightarrow optimally separating hyperplane (surface) \rightarrow "training"

Linear Discriminant

<u>General:</u> $y(x = \{x_1, ..., x_D\}) = \sum_{i=0}^{M} w_i h_i(x)$ <u>Linear Discriminant:</u> $y(x = \{x_1, ..., x_D\}) = w_0 + \sum_{i=1}^{D} w_i x_i$

i.e. any linear function of the input variables: \rightarrow linear decision boundaries

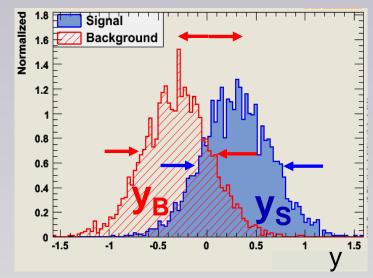


PDF of the test statistic y(x) → determine the "weights" w that separate "best" PDF_S from PDF_B

INFN School of Statistics 2015

Fisher's Linear Discriminant

$$y(x = \{x_1, ..., x_D\}) = y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{n} w_i x_i$$



determine the "weights" w that do "best"

- Maximise "separation" between the S and B
- \rightarrow minimise overlap of the distributions of y_s and y_b maximise the distance between the two mean values of the classes

minimise the variance within each class

 $J(\vec{w}) = \frac{(E[y_B] - E[y_S])^2}{\sigma_{y_B}^2 + \sigma_{y_S}^2} = \frac{\vec{w}^T B \vec{w}}{\vec{w}^T W \vec{w}} = \frac{\text{"in between" variance}}{\text{"within" variance}}$ → maximise $\overrightarrow{\nabla_w} J(\overrightarrow{w}) = 0 \Rightarrow \overrightarrow{w} \propto W^{-1}(\langle \overrightarrow{x} \rangle_S - \langle \overrightarrow{x} \rangle_B)$ the Fisher coefficients

note: these quantities can be calculated from the training data

Classifier Training and Loss-Function

More general: rather than: maximize $J(\vec{w})$ constructed "by hand"

- \rightarrow minimize a the expectation value of a "Loss function" $L(y^{train}, y(x))$
- which penalizes prediction errors for training events

<u>regression:</u> y_i^{train} = the functional value of training event *i* which happens to have the measured observables x_i

<u>classification</u>: $y_i^{train} = 1$ for signal, =0 (-1) background

What to choose for $L(y^{train}, y(x))$?

• Regression:

 $\rightarrow E[L] = E[(y^{train} - y(x))^2] \quad \text{squared error loss (regression)}$

• Classification:

 $\rightarrow E[L] = E[y_i^{train} \log(y(x_i)) + (1 - y_i^{train}) \log(1 - y(x_i))]$ binomial loss

Classifier Training and Loss-Function

- Regression: y_i^{train} : Gaussian distributed around a mean value
 - Remember: Maximum Likelihood estimatior (Tuesday by Glen Cowan)

→ Maximise: log probability of the observed training data:

$$\log L = \log \prod_{i}^{events} P(y_i^{train} | y(x_i)) = \sum_{i}^{events} \log(P(y_i^{train} | y(x_i))) = \sum_{i}^{events} (y_i^{train} - y(x_i))^2$$

 $\Rightarrow E[L] = E[(y^{train} - y(x))^2] \text{ squared error loss (regression)}$

• Classification: <u>now:</u> y_i^{train} (i.e. is it 'signal' or 'background') is Bernoulli distributed

$$\log L = \sum_{i}^{events} \log(P(y_i^{train}|y(x_i))) = \sum_{i} \log(P(S|x_i)^{y_i^{train}}P(B|x_i)^{1-y_i^{train}})$$

If we now say y(x) should simply parametrize P(S|x); $P(B|x)=1-P(B|x) \rightarrow$

$$\rightarrow E[L] = E[y_i^{train} \log(y(x_i)) + (1 - y_i^{train}) \log(1 - y(x_i))]$$
 binomial loss
Helge Voss

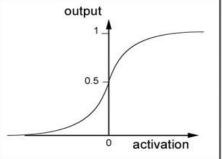
Logistic Regression*

*Actually, although called 'regression' it is a 'classification' algorithm!

Fisher Discriminant:

- equivalent to Linear Discriminant with 'squared loss function'
- Ups: didn't we just show that "classification" would naturally use 'binomial loss function"?
- \rightarrow O.k. let's build a linear classifier that maximizes 'binomial loss':
 - → For y(x) to parametrize P(S|x), we clearly cannot 'use a linear function for 'y(x)'
 - → But we can 'squeeze' any linear function $w_0 + \sum w_j x^j = Wx$ into the proper interval $0 \le y(x) \le 1$ using the 'logistic function' (i.e. sigmoid function)

→ $y(x) = P(S|x) = sigmoid(Wx) = \frac{1}{1+e^{-Wx}}$ → $Log(Odds) = Log\left(\frac{P(S|x)}{P(B|x)}\right) = Wx$ is linear!



Note: Now y(x) has a 'probability' interpretation. y(x) of the Fisher discriminant was 'just' a discriminator.

Neural Networks

for "arbitrary" non-linear decision boundaries $\rightarrow y(x)$ non-linear function

$$y(\vec{x}) = sigmoid\left(\sum_{k}^{M} w_{k}h_{k}(\vec{x})\right)$$

Think of h_k(x) as a set of "basis" functions
If h(x) is sufficiently general (i.e. non linear), a linear combination of "enough" basis function should allow to describe any possible discriminating function y(x)

there are also mathematical proves for this statement.

Imagine you chose do the following:

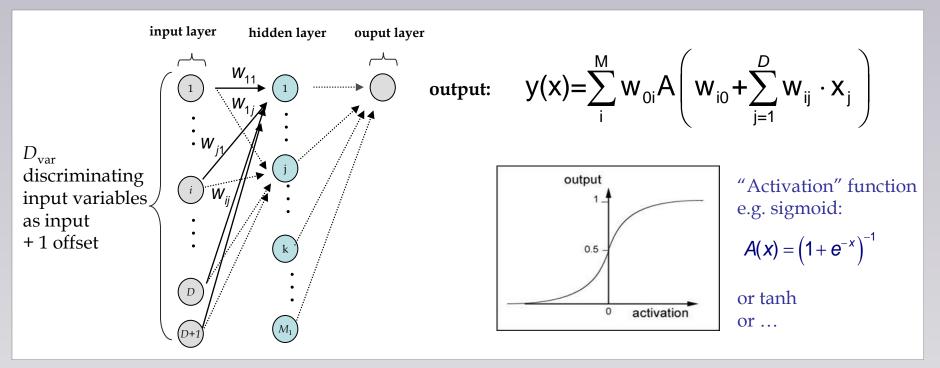
$$y(x) = A\left(\sum_{k}^{M} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{M} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} activation\right) = A\left(\sum_{k}^{M} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} activation\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} activation\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} activation\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k0} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k} + \sum_{j=1}^{D} w_{kjj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} A \left(w_{k} + \sum_{j=1}^{D} w_{k} x_{jj} x_{jj}\right)\right) = A\left(\sum_{k}^{0} w_{k} x_{k} x_{$$

A non linear (sigmoid) function of a linear combination of non linear function(s) of linear combination(s) of the input data

Ready is the Neural Network Now we "only" need to find the appropriate "weights" w

Neural Networks:

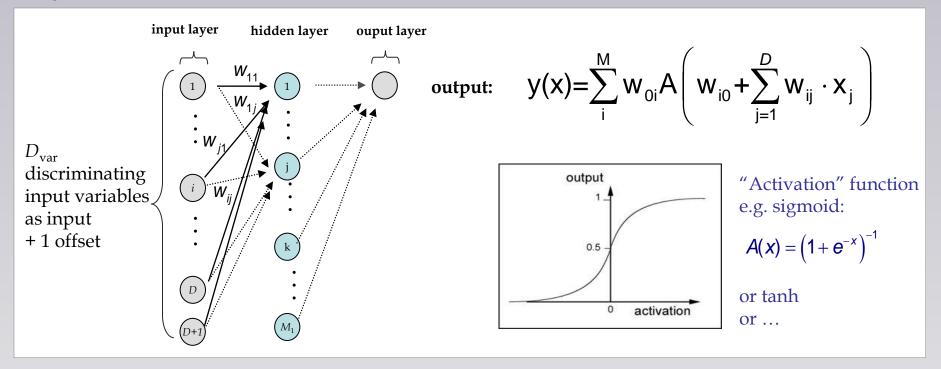
But before talking about the weights, let's try to "interpret" the formula as a Neural Network:



- Nodes in hidden layer represent the "activation functions" whose arguments are linear combinations of input variables \rightarrow non-linear response to the input
- The output is a linear combination of the output of the activation functions at the internal nodes
- Input to the layers from preceding nodes only \rightarrow feed forward network (no backward loops)
- It is straightforward to extend this to "several" input layers

Neural Networks: Multilayer Perceptron MLP

try to "interpret" the formula as a Neural Network:

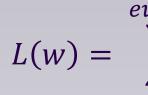


nodes→neurons links(weights)→synapses Neural network: try to simulate reactions of a brain to certain stimulus (input data)

prinierT krowtek Ieruek

Now we just need to fix the parameters by ? \rightarrow Minimizing Loss function:

predicted





i.e. use usual "sum of squares"

classification: Binomial loss

$$L(w) = \sum_{i}^{events} \left(y_i^{train} \log(y(x_i)) + \left(1 - y_i^{train}\right) \log(1 - y(x_i)) \right) \right)$$
where
$$y^{train} = \begin{cases} 1, & \text{signal} \\ 0, & \text{backgreen} \end{cases}$$

• y(x): very "wiggly" function \rightarrow many local minima. \rightarrow one global overall fit not efficient/reliable

true

Back-propagation

back propagation (nice recursive formulation of the gradient $\frac{\partial L}{\partial w_{ii}}$ using 'chain rule')

→(Stochastic) gradient decent: update weights 'along the gradient' at each training step

$$\rightarrow w_{ij} \rightarrow w_{ij} - \eta \frac{\partial L}{\partial w_{ij}}; \quad \eta = \text{learning rate}$$

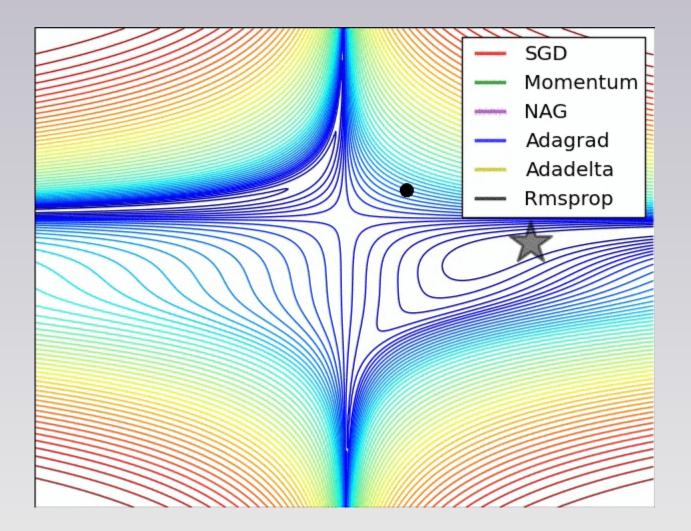
- online learning: update event by event
- (mini) batch learning: update after seeing the whole (parts of the) sample

Simple "gradient" is typically not the most effective function minimizer:

- → Use function curvature ("hessian" matrix) à la Newton method
- * "Momentum" accelerate the learning when gradient direction stays 'constant' e.g.:

 $\rightarrow v \rightarrow \mu v - \eta \nabla L$; $w_{ij} \rightarrow w_{ij} + v$ (classical momentum)

Gradient Descent



Max-Rianck-Institut für Kemphysik

What is "Deep Learning"

Neural networks with 'many hidden layers'

- Learn a hierarchy of features: i.e. successive layers learn: 4-vectors
 → invariant masses → decays)
- Used to be 'impossible to train' \rightarrow vanishing gradient problem
- Enormous progress in recent years
 - Layerwise pre-training using 'auto-encoders' or 'restricted-Boltzman machines'
 - 'intelligent' random weight initialisation
 - Stochastic gradient decent with 'momentum'
 - 'new' activation functions:

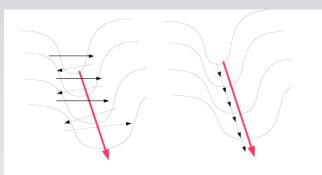


Figure 1. Optimization in a long narrow valley

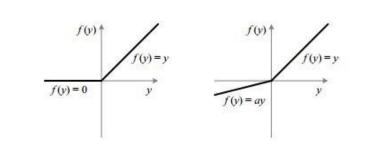


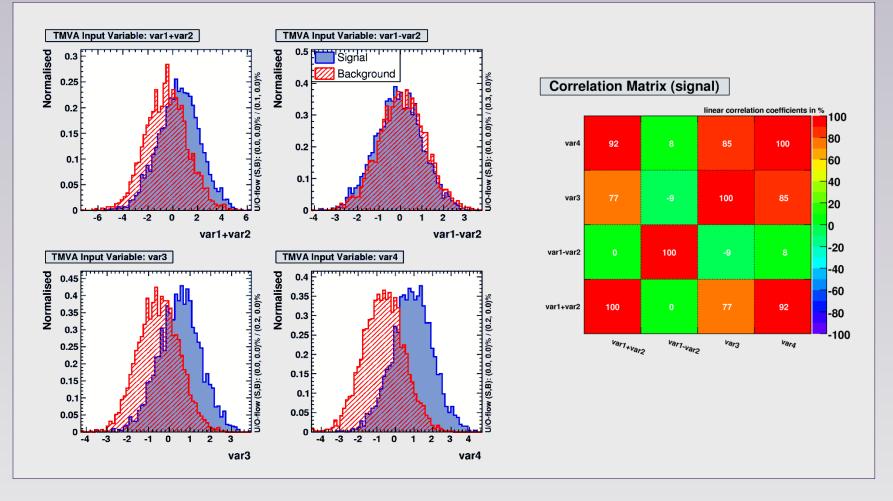
Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the negative part is not constant and is adaptively learned.

- Multivariate Algorithms are a powerful alternative to "classical cuts" that:
 - Do not use hard selection criteria (cuts) on each individual observables
 - Look at all observables "together"
 - → eg. combining them into 1 variable
- → Mulitdimensional Likelihood → PDF in D-dimensions
- → Projective Likelihood (Naïve Bayesian) → PDF in D times 1 dimension
 - → Be careful about correlations
- Linear classifiers : y(x) = 'linear combination of observables "x" '
 decision boundary (y(x) = const) is a linear hyperplane

\rightarrow Non-linear classifier: Neural networks \rightarrow any kind of hyperplane

What if there are correlations?

• Typically correlations are present: $C_{ij} = cov[x_i, x_j] = E[x_i, x_j] - E[x_i] E[x_j] \neq 0$ (i $\neq j$)



 \rightarrow pre-processing: choose set of linear transformed input variables for which C_{ii} = 0 (i \neq j)

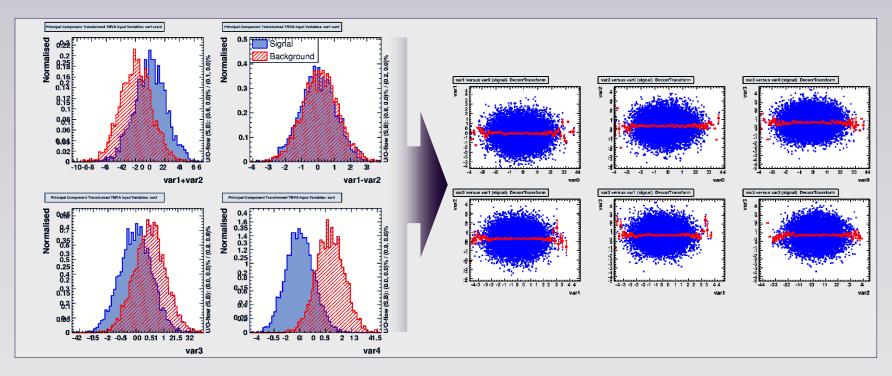
De-Correlation

Find variable transformation that diagonalises the covariance matrix

Determine square-root C' of correlation matrix C, i.e., C = C'C'

• compute C' by diagonalising C: $D = S^T C S \implies C' = S \sqrt{D} S^T$

• transformation from original (x) in de-correlated variable space (x') by: x' = C' - 1x



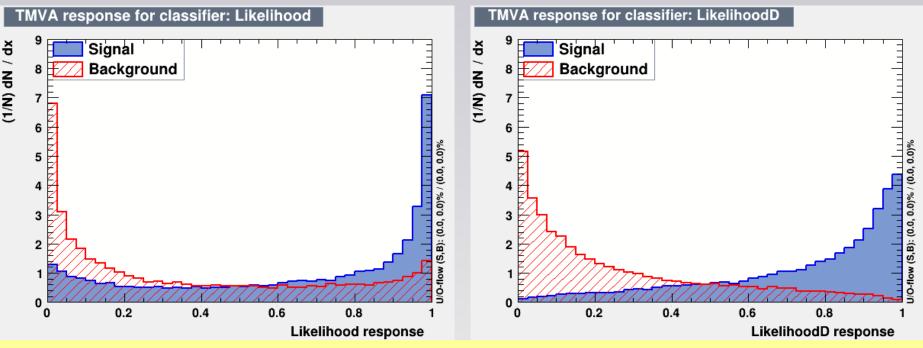
Attention: eliminates only linear correlations!!

Decorrelation at Work

Example: linear correlated Gaussians → decorrelation works to 100%
 →1-D Likelihood on decorrelated sample give best possible performance
 →compare also the effect on the MVA-output variable!

correlated variables:

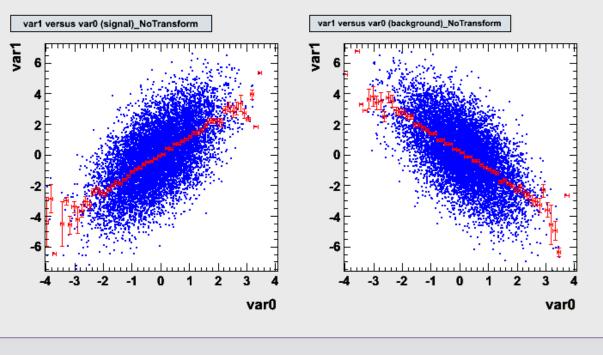
after decorrelation



Watch out! Things might look very different for non-linear correlations!

- in cases with non-Gaussian distributions and/or nonlinear correlations, the decorrelation needs to be treated with care
- How does linear decorrelation affect cases where correlations between signal and background differ?

Original correlations

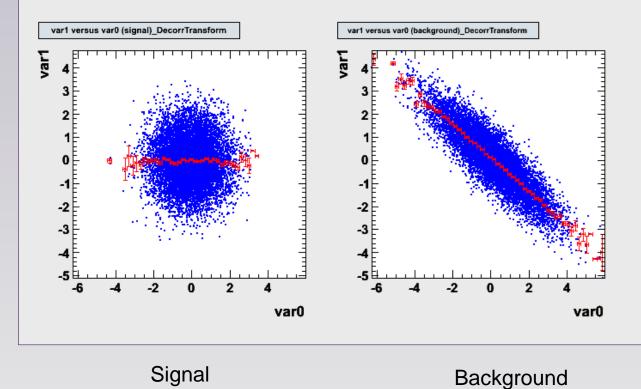


Signal

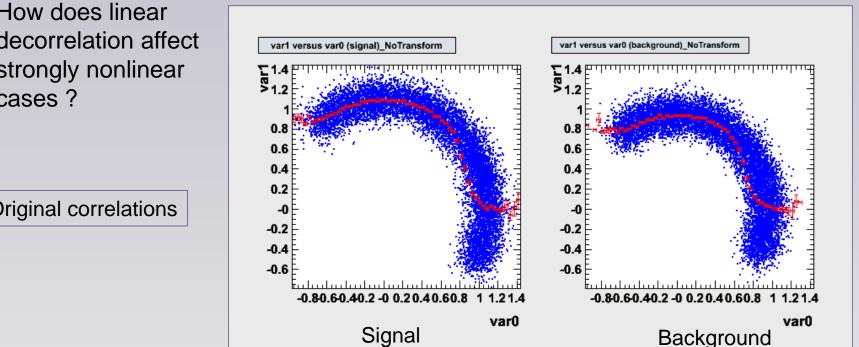
Background

- in cases with non-Gaussian distributions and/or nonlinear correlations, the decorrelation needs to be treated with care
- How does linear decorrelation affect cases where correlations between signal and background differ?

SQRT decorrelation



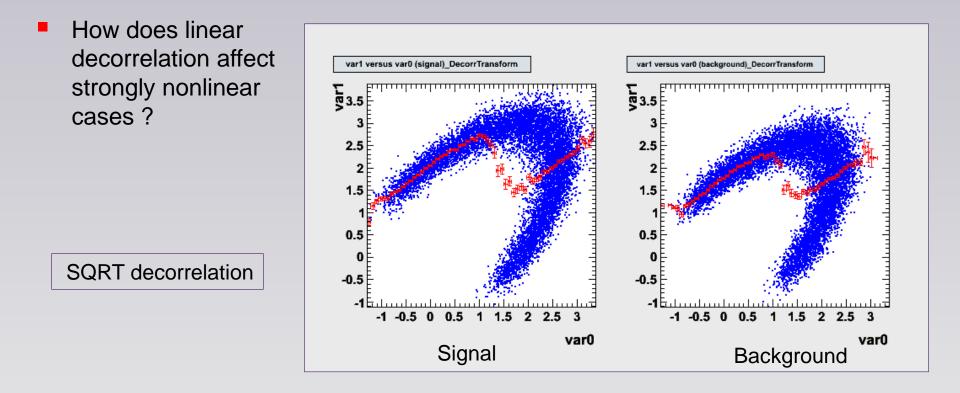
in cases with non-Gaussian distributions and/or nonlinear correlations, the decorrelation needs to be treated with care



How does linear decorrelation affect strongly nonlinear cases?

Original correlations

in cases with non-Gaussian distributions and/or nonlinear correlations, the decorrelation needs to be treated with care

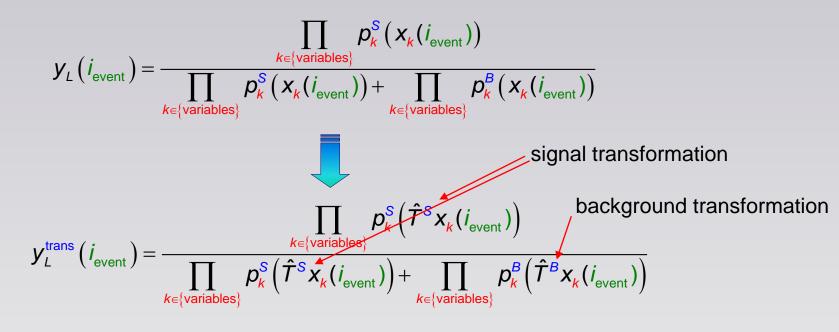


Watch out before you used decorrelation "blindly"!!
 Perhaps "decorrelate" only a subspace!

How to Apply the Pre-Processing Transformation?

- Correlation (decorrelation): different for signal and background variables
- 🛞 we don't know beforehand if it is signal or background.
 - What do we do?

 \rightarrow for <u>likelihood ratio</u>, decorrelate signal and background independently



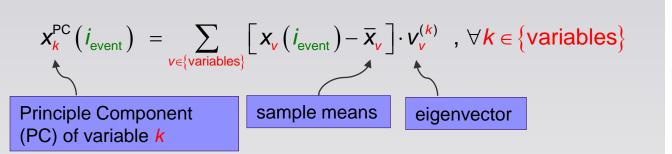
for <u>other estimators</u>, one needs to decide on one of the two... (or decorrelate on a mixture of signal and background events)

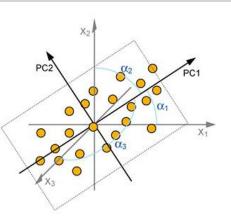
Helge Voss

INFN School of Statistics 2015

De-Correlation: Principal Component Analysis

- PCA (unsupervised learning algorithm)
 - reduce dimensionality of a problem
 - find most dominant features in a distribution
- Eigenvectors of covariance matrix \rightarrow "axis" in transformed variable space
 - large eigenvalue \rightarrow large variance along the axis (principal component)
 - sort eigenvectors according to their eigenvalues
 - transform dataset accordingly
 - → diagonalised covariance matrix with first "variable" → variable with largest variance





• Matrix of eigenvectors V obey the relation: $C \cdot V = D \cdot V \rightarrow PCA$ eliminates correlations!

correlation matrix

diagonalised square root of C

- Improve decorrelation by pre-Gaussianisation of variables
 - First: transformation to achieve uniform (flat) distribution:

$$\mathbf{x}_{k}^{\text{flat}}(i_{\text{event}}) = \int_{-\infty}^{\mathbf{x}_{k}(i_{\text{event}})} p_{k}(\mathbf{x}_{k}') d\mathbf{x}_{k}', \forall k \in \{\text{variables}\}$$

Rarity transform of variable *k* Measured value PDF of variable *k*

The integral can be solved in an unbinned way by event counting, or by creating non-parametric PDFs (see later for likelihood section)

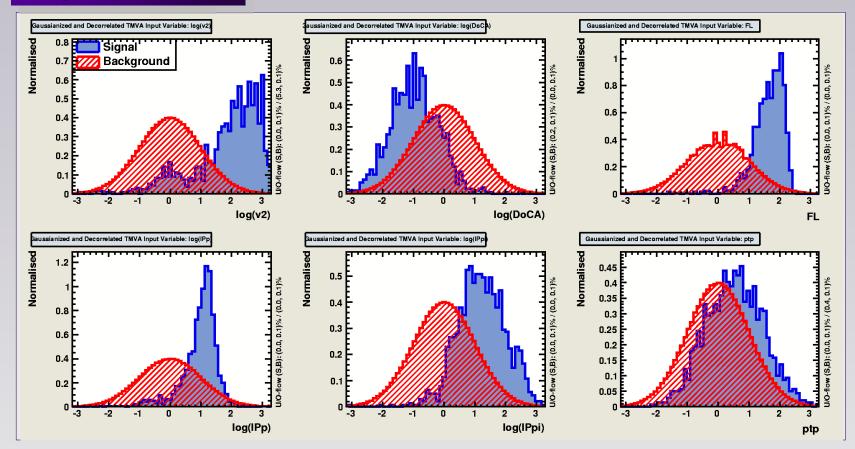
Second: make Gaussian via inverse error function: $erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$

$$x_{k}^{\text{Gauss}}(i_{\text{event}}) = \sqrt{2} \cdot \text{erf}^{-1}(2x_{k}^{\text{flat}}(i_{\text{event}}) - 1) , \forall k \in \{\text{variables}\}$$

Third: decorrelate (and "iterate" this procedure)

"Gaussian-isation"

Background - Gaussianised



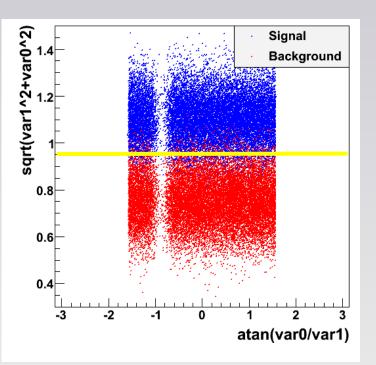
We cannot simultaneously "Gaussianise" both signal and background !

Linear Discriminant and non linear correlations

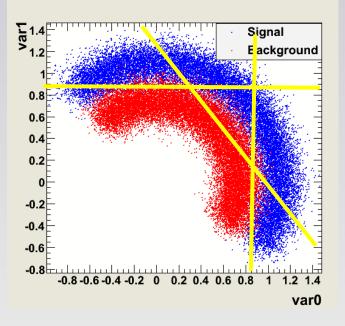
assume the following non-linear correlated data:

- the Linear discriminant obviously doesn't do a very good job here:
- Of course, these can easily be decorrelated:

here: linear discriminator works perfectly on de-correlated data



 $var 0^{l} = \sqrt{var 0^{2} + var 1^{2}}$



Linear Discriminant with Quadratic input:

A simple to "quadratic" decision boundary:

