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 it seems intuitive that this boundary will give better results on another 

statistically independent data set than that one 

e.g. stop training before you learn 

statistical fluctuations in the data 

Include ‘regularisation’ in the model 

verify on independent “test” sample 

overtraining is concern for every 

“tunable parameter” a of classifiers: 

Smoothing parameter,   n-nodes… 

training cycles 
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That is where 

you want to be 



Cross Validation 
classifiers have tuning parameters “a”   choose and control performance 

 #training cycles, #nodes, #layers, regularisation parameter (neural net) 

 smoothing parameter h  (kernel density estimator) 

…. 

more training data  better training results 

division of data set into  “training” and “test” and “validation” sample?  

Train Train Train Train Test Train 

Cross Validation: divide the data sample into say 5 sub-sets 

Train Train Train Train Test Train Train Train Train Train Test Train Train Train Test Train Train Train Train Train Test Train 

 train 5  classifiers:  yi(x,a) : i=1,..5,  

classifier yi(x,a) is trained without the i-th sub sample 

  calculate the test error: 
events

i k
kevents

1
CV( ) L(y (x , )) L : loss function

N
a a 

choose tuning parameter a for which CV(a) is minimum and train the 

final classifier using all data 
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Neural Network Regularisation 
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How to control model complexity in Neural Networks: 

 

 #nodes and # layers 

 early stopping  very first (old) ‘regularizer’ used 
 Start with small random weights  sigmoid approximately linear  

essentially a linear model  stop before it deviates too much from that 

 

 Weight decay:   

 add ‘regularizing’ term to the loss function 𝐿 = 𝐿 +
1

2
∑𝑤2 

 Favour small weights  i.e. simpler models 

 

 

 

 

 Dropout 

 Randomly remove nodes during 

each training step 

 Essentially a large model 

averaging procedure like ‘bagging” 

 



What is the best Network Architecture? 

Typically in high-energy physics, non-linearities are reasonably simple,  

    1 layer with a larger number of nodes probably enough 

    still worth trying 2 (3?) layers (and less nodes in each layer) 
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We (TMVA) used to say: 

But  Higgs ML Challenge:  Won by a ‘Deep Neural Network’ 

 well… 3 hidden layers with 600 

nodes each! 

 

 Did it win because if ‘learned’ 
categories, of different event classes (i.e 

1 or 3-prong tau decays e.t.c) that noone  

seemed to look at explicity? 

 

 Or was it just “collecting efficieny” in 

corners that requires highly flexible 

classifiers, hence VERY careful tuning 

using extensive cross validation?  

But  Higgs ML Challenge:  Won by a ‘Deep Neural Network’ 

 well… 3 hidden layers with 600 

nodes each! 

 

 Did it win because if ‘learned’ 
categories, of different event classes (i.e 

1 or 3-prong tau decays e.t.c) that noone  

seemed to look at explicity? 

 

 Or was it just “collecting efficieny” in 

corners that requires highly flexible 

classifiers, hence VERY careful tuning 

using extensive cross validation?  
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David Rousseau tried to answer this:   BUT: 

  TMVA was untuned !  And Gabor spent MANY MANY hours tuning !! 

  that is more than just an ‘unfair’ comparison.  

 

 

 

 

Compare figure of merits:  

(larger is better) 

 

TMVA untuned:             3 

TMVA tuned (Eckhard) 3.6 

 

XGBoost tuned             3.7 

Gabor                           3.8 



Overview 
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Multivariate  classification/regression  algorithms  (MVA) 

 what they are 

 how they work 

 Overview over some classifiers 

 Multidimensional Likelihood  (kNN : k-Nearest Neighbour) 

 Projective Likelihood (naïve Bayes)  

 Linear Classifier 

 Non linear Classifiers 

 Neural Networks 

 Boosted Decision Trees 

 Support Vector Machines 

 General comments about: 

 Overtraining 

 Systematic errors 



Boosted Decision Trees 
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 Decision Tree: Sequential application of cuts splits 

the data into nodes, where the final nodes (leafs) 

classify an event as signal or background 

 Boosted Decision Trees (1996): 
combine a whole forest of Decision Trees, 

derived from the same sample, e.g. using  

different event weights. 

 overcomes the stability problem 

 increases  performance 

 became popular in HEP since 

MiniBooNE, B.Roe et.a., NIM 543(2005) 

 Each branch  one standard “cut” sequence 

 easy to interpret, visualised 

 independent of monotonous variable 
transformations, immune against outliers  

 weak variables are ignored (and don’t 
(much) deteriorate performance) 

 Disadvatage  very sensitive to statistical 
fluctuations in training data 
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Growing a Decision Tree 

9 

  start with training sample at the root node 

 split training sample at node into two, using a 

cut in the one variable that gives best 

separation gain 

 continue splitting until:  

 minimal #events per node  

 maximum number of nodes 

 maximum depth specified 

 (a split doesn’t give a minimum separation 

gain)  not a good idea  see 

“chessboard” 

 leaf-nodes classify S,B according to the 

majority of events  or give a S/B 

probability 
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Decision Tree Pruning 
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Decision tree 

after pruning Decision tree before pruning 

 Individual decision trees: Grown to large size and then pruned!  

 Pruning algorithms are developed and applied on individual trees 

 optimally pruned single trees are not necessarily optimal in a forest ! 

 Boosted Decision Trees are better limited in growth size (max depth) straight way 

 optimal depth: “typically small O(<5) depending on ‘interaction’ between variables, 

i.e.  terms in ANOVA ‘expansion’) : 

𝜂 𝑋 = ∑ 𝜂𝑖 𝑋𝑖 + ∑ 𝜂𝑖𝑗 𝑋𝑖 , 𝑋𝑗 + ∑ 𝜂𝑖𝑗𝑘 𝑋𝑖 , 𝑋𝑗 , 𝑋𝑘 + … 𝑖𝑗𝑘  𝑖𝑗𝑖  with 𝜂(𝑋) begin the target 

(discriminating) function 
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XGBoost apparently has some ‘new’ regularizing scheme  probably 

worth looking at 



Boosting 
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Training Sample 
classifier  

C(0)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(1)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(2)(x) 

Weighted 

Sample 

re-weight 

Weighted 

Sample 

re-weight 

classifier  

C(3)(x) 

classifier  

C(m)(x) 

ClassifierN
(i)

i
i

y(x) w C (x) 
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Adaptive Boosting (AdaBoost) 
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Training Sample 
classifier  

C(0)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(1)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(2)(x) 

Weighted 

Sample 

re-weight 

Weighted 

Sample 

re-weight 

classifier  

C(3)(x) 

classifier  

C(m)(x) 

err

err

err

1 f
with :

f

misclassified events
f

all events





ClassifierN (i)
(i)err

(i)
i err

1 f
y(x) log C (x)

f

 
  

 


 AdaBoost re-weights events 

misclassified by previous classifier by: 

 AdaBoost weights the classifiers also 

using the error rate of the individual 

classifier according to:  
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AdaBoost: A simple demonstration 
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The example: (somewhat artificial…but nice for demonstration) :   

• Data file with three “bumps” 

• Weak classifier (i.e. one single simple “cut”   ↔ decision tree stumps ) 

B S 

var(i) > x var(i) <= x 

a) Var0 > 0.5  εsig=66% εbkg ≈ 0%   misclassified events in total 16.5% 

or  

b) Var0 < -0.5  εsig=33% εbkg ≈ 0%  misclassified events in total 33% 

the training of a single decision tree stump will find “cut a)” 

a) b) 
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AdaBoost: A simple demonstration 
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The first “tree”, choosing cut a) will give an error fraction: err = 0.165 

.. and hence will 

chose:   “cut b)”:  

Var0 < -0.5 

 

  

b) 

The combined classifier:  Tree1 + Tree2 

the (weighted) average of the response to 

a test event from both trees is able to 

separate signal from background as 

good as one would expect from the most 

powerful classifier 

 

 before building the next “tree”:  weight wrong classified training events by  ( 1-err/err) ) ≈ 5  

 the next “tree” sees essentially the following data sample: 

re-weight 
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“A Statistical View of Boosting” (Friedman 

1998 et.al) 
Boosted Decision Trees:  two different interpretations 

1.    give events that are “difficult to categorize” more weight and average 

afterwards the results of all classifiers that were obtained with different weights 

2.    see each Tree as a “base classifier” of an additive classifier ensemble                     

𝑦 𝑥; 𝛼, 𝜃 =  𝛼𝑖𝑇𝑖 𝑥; 𝜃

𝑛𝑇𝑟𝑒𝑒𝑠

𝑖

 

    boosting:   “greedy” (i.e. each step just adds a new classifier to the 

ensemble w/o modifying the current ensemble) optimization of 𝑦(𝑥; 𝛼, 𝜃) w.r.t a 

specific ‘loss function’ 

 AdaBoost: “exponential loss function”  𝐿 = exp (−𝑦𝑡𝑟𝑎𝑖𝑛𝑦 𝑥; 𝛼, 𝜃 )  where 

𝑦𝑡𝑟𝑎𝑖𝑛 = 1 (signal), 𝑦𝑡𝑟𝑎𝑖𝑛 = −1 (backgr.) 

 Optimizes ‘log odds’, i.e. 𝑦𝑏𝑒𝑠𝑡 𝑥 =
1

2
log
𝑃(𝑆|𝑥)

𝑃(𝐵|𝑥)
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𝐸 𝐿 = 𝐸 𝑒−𝑦𝑦 𝑥 = 𝑃 𝑆 𝑥 𝑒−𝑦 𝑥 + 𝑃 𝐵 𝑥 𝑒𝑦 𝑥 ;
𝑑𝐸[𝐿]

𝑑𝑦(𝑥)
= −𝑃 𝑆 𝑥 𝑒−𝑦 𝑥 + 𝑃 𝐵 𝑥 𝑒𝑦 𝑥 ≡ 0 → 𝑦 𝑥 =

1

2
log
𝑃(𝑆|𝑥)

𝑃(𝐵|𝑥)
;  



Gradient Boost 

16 

 

AdaBoost: Exponential loss 𝐿 = exp (−𝑦𝑡𝑟𝑎𝑖𝑛𝑦 𝑥; 𝛼, 𝜃 )   sensitive to outliers 

 

Gradient Boost: 

implement “boosting” with arbitrary “loss functions” by approximating the 

gradient of the loss function 

Which loss function actually gives us the proper ‘bernulli proability’ 

distribution for the fitted P(S 

Binomial log-likelihood loss ln(1 + exp( -2ytrainy(α,x))   more well 

behaved loss function,   (the corresponding “GradientBoost” is 

implemented in TMVA) 
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Bagging and Randomised Trees 
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Bagging:  

 combine trees grown from “bootstrap” samples  

(i.e re-sample training data with replacement)  

 

Randomised Trees: (Random Forest: trademark L.Breiman, A.Cutler) 

 combine trees grown with:  

 random bootstrap (or subsets) of the training data only 

 consider at each node only a random subsets of variables for 

the split 

 NO Pruning (despite possibly larger trees than AdaBoost) ! 

 or any “combination” of Bagging/Randomising/Boosting 

These combined classifiers work surprisingly well, are very 

stable and almost perfect “out of the box” classifiers 
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A ‘Chess Board’ Toy  MC 
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Performance achieved without parameter adjustments: 

  nearest Neighbour and BDTs are best “out of the box”  

After some parameter tuning, also SVM und ANN(MLP) 

perform 

Theoretical maximum 

Event Distribution 

Events weighted by SVM response 
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Principle (just as in BDT): multiple training cycles, each time wrongly 
classified events get a higher event weight 

Response is weighted sum 

of each classifier response 

Training Sample 
classifier  

C(0)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(1)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(2)(x) 

Weighted 

Sample 

re-weight 

classifier  

C(m)(x) 

ClassifierN (i)
(i)err

(i)
i err

1 f
y(x) log C (x)

f

 
  

 


Generalised Classifier Boosting 
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AdaBoost On a linear Classifier (e.g. Fisher) 
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AdaBoost On a linear Classifier (e.g. Fisher) 
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Support Vector Machines 
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 Neural Networks are complicated by finding the proper 

optimum “weights” for best separation power by “wiggly” 

functional behaviour of the piecewise defined separating 

hyperplane 

 KNN (multidimensional likelihood) suffers disadvantage that 

calculating the MVA-output of each test event involves 

evaluation of  ALL training events 

 If Boosted Decision Trees in theory are always weaker than a 

perfect Neural Network 

Helge Voss 



Support Vector Machine 
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 There are methods to create linear decision boundaries using only measures of 

distances  (= inner (scalar) products) 

  leads to quadratic optimisation problem  

 The decision boundary in the end is defined only by training events that are 

closest to the boundary 

 suitable variable transformations into a higher dimensional space may allow   

separation with linear decision boundaries non linear problems 

 

 Support Vector Machine 
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Support Vector Machines 

24 

x1 

x2 

margin  

support 

vectors 
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 hyperplane that  separates S from B  

 Linear decision boundary 

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane 

N
o
n

-s
e
p
a
ra

b
le

 d
a
ta

 

 Solution of largest margin depends only on  

inner product of support vectors (distances)  

 quadratic minimisation problem 

1 

2 

4 

3  If data non-separable add misclassification cost 

parameter C·ii to minimisation function  
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Support Vector Machines 
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 Non-linear cases: 
 Transform variables into higher dimensional feature space where again a linear 

boundary (hyperplane) can separate the data 

(x1,x2) S
e
p
a

ra
b
le

 d
a
ta

 
N

o
n

-s
e
p
a
ra

b
le

 d
a
ta

 

 hyperplane that  separates S from B  

 Linear decision boundary 

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane 

 largest margin - inner product of support vectors 

(distances)  quadratic minimisation problem 

 If data non-separable add misclassification cost 

parameter C·ii to minimisation function  
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Support Vector Machines 
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x1 

x2 

x1 

x3 

x1 

x2 

 Non-linear cases: 

Kernel size paramter typically needs careful tuning!   (Overtraining!) 

 non linear  variable transformation  linear separation in transformed feature space  

 no explicit transformation specified   Only its “scalar product”  x·x  Ф(x)·Ф(x) needed. 

 certain Kernel Functions can be interpreted as scalar products between transformed 

vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid 

 Choose Kernel and fit the hyperplane using the linear techniques developed above 

(x1,x2) S
e
p
a
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b
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 d
a
ta

 
N
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 Find hyperplane that best separates signal 

from background  

 Linear decision boundary 

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane 

 largest margin - inner product of support vectors 

(distances)  quadratic minimisation problem 

 If data non-separable add misclassification cost 

parameter C·ii to minimisation function  
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Support Vector Machines 
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 How does this “Kernel” business work? 

 Kernel function  == scalar product in “some transformed” variable space 

 

 standard:   𝑥 ∙ 𝑦 = ∑𝑥𝑖𝑦𝑖 = 𝑥 𝑦 ∗ 𝑐𝑜𝑠(𝜃) 

 large if :   𝑥 ∙ 𝑦    are in the same “direction” 

 zero if :   𝑥 ∙ 𝑦   are orthogonal  (i.e. point along different axes / dimension) 

 

 e.g. Gauss kernel:     Φ 𝑥 ∙ Φ 𝑦 = 𝐾 𝑥 , 𝑦 = 𝑒𝑥𝑝(−
𝑥 −𝑦 2

2𝜎2
) 

 zero if ponts:  𝑥  𝑎𝑛𝑑 𝑦    “far apart” in original data space 

 large only in “vicinity” of each other 

 

 𝜎 < distance between training data points: 

 each data point is “lifted” into its “own” dimension 

 full separation of “any” event configuration with decision boundary along 

coordinate axis 

 well, that would of course be:  overtraining   
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Support Vector Machines 

28 

SVM: the Kernel size parameter: 

example: Gaussian Kernels 

 Kernel size (s of the Gaussian) choosen 

too large:  not enough “flexibility” in the 

underlying transformation 

 Kernel size (s of the Gaussian) choosen 

propperly for the given problem 

colour code:  

Red  large signal 

probability:  
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Overview 
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Multivariate  classification/regression  algorithms  (MVA) 

 what they are 

 how they work 

 Overview over some classifiers 

 Multidimensional Likelihood  (kNN : k-Nearest Neighbour) 

 Projective Likelihood (naïve Bayes)  

 Linear Classifier 

 Non linear Classifiers 

 Neural Networks 

 Boosted Decision Trees 

 Support Vector Machines 

 General comments about: 

 Overtraining 

 Systematic errors 



See some Classifiers at Work 
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 “generative models”: 

 kNN/Likelihood  PDF estimators  𝒚 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺𝒊𝒈𝒏𝒂𝒍)

𝑷𝑫𝑭(𝒙|𝑩𝒌𝒈)
 

 

 “discriminative models” 

 (non-)linear model 𝒚 𝒙 = ∑𝒘𝒊𝒉(𝒙)  : 𝒉(𝒙) – basis function of 

model 

 Fisher Discriminant, Logistic Regression, Neural Networks 

 Boosted Decision Trees: belong here:  do you see what  𝒉(𝒙) is in 

that case? 

 So do SVM   (linear model in transformed variable space  it’s just expressed 

not directly as “sum over basis functions) 

 
→ 𝒚(𝒙) for each event:  
→  𝑷 𝑺 𝒙  

→ pose cut on 𝑷 𝑺 𝒙  
→weigh event with 𝑷 𝑺 𝒙  

 

 

y(x) 

1.5 

 0.45 



Decision Boundaries 

BDT 

kNN 

MLP 

LD 

Likelihood 
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Final Classifier Performance 

32 Helge Voss INFN School of Statistics 2015 

Background rejection versus signal efficiency curve:  

Linear 

Example 
Cross 

Example 

Circular 

Example 



Visualisation of Decision 

Boundary 
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Visualisation in 3 Variables 
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Visualisation of Decision 

Boundary 

35 Helge Voss INFN School of Statistics 2015 



General Advice for (MVA) Analyses 
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 There is no magic in MVA-Methods: 

no need to be too afraid of “black boxes”   they are not sooo hard to understand 

you typically still need to make careful tuning and do some “hard work” 

no “artificial intelligence” … just “fitting decision boundaries” in a given model 

 The most important thing at the start is finding good observables  

good separation power between S and B 

little correlations amongst each other 

no correlation with the parameters you try to measure in your signal sample! 

 Think also about possible combination of variables  

this may allow you to eliminate correlations 

 rem.: you are MUCH more intelligent than what the algorithm 

 Apply pure preselection cuts and let the MVA only do the difficult part. 

 “Sharp features should be avoided”  numerical problems, loss of 

information when binning is applied 

simple variable transformations (i.e. log(variable) ) can often smooth out these areas 

and allow signal and background differences to appear in a clearer way  

 Treat regions in the detector that have different features “independent” 

can introduce correlations where otherwise the variables would be uncorrelated! 
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“Categorising” Classifiers 
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Multivariate training samples often have distinct sub-populations of data 

A detector element may only exist in the barrel, but not in the endcaps 

A variable may have different distributions in barrel, overlap, endcap regions 

Ignoring this dependence creates correlations between variables, which 

must be learned by the classifier 

Classifiers such as the projective likelihood, which do not account for correlations, 

significantly loose performance if the sub-populations are not separated 

Categorisation means splitting the data sample into categories defining 

disjoint data samples with the following (idealised) properties: 

Events belonging to the same category are statistically indistinguishable 

Events belonging to different categories have different properties  

In TMVA: All categories are treated independently for training and 

application (transparent for user), but evaluation is done for the whole 

data sample ( buhuhu… fails if y(x) is NOT P(S|x) !! ) 



T MVA Categories 
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 TMVA Categories:  one classifier per ‘region’ 

  ‘regions’ in the detector (data)  with different features treated independent 

improves performance 

avoids additional correlations where otherwise the variables would be 

uncorrelated! 

E
x
a

m
p

le
: 
v
a

r4
 d

e
p

e
n

d
s
 

o
n

 s
o

m
e

 v
a

ri
a

b
le

 “
e

ta
” 

|e
ta

| 
>

 1
.3

 
|e

ta
| 
<

 1
.3

 

Recover optimal performance after 

splitting into categories 



Some Words about Systematic Errors 
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 Typical worries are:   

What happens if the estimated “Probability Density” is wrong ? 

 Can the Classifier, i.e. the discrimination function y(x), introduce systematic uncertainties? 

What happens if the training data do not match “reality”  

Any wrong PDF leads to imperfect discrimination function 

 

Imperfect (calling it “wrong” isn’t “right”)  y(x)   loss of discrimination power 

 that’s all! 

classical cuts face exactly the same problem,   however: 

in addition to cutting on features that are not correct, now you can also “exploit” 

correlations that are in fact not correct 

P(x | S)
y(x)

P(x | B)


 Systematic error are only introduced once “Monte Carlo events” with imperfect modeling are 

used for  

 efficiency; purity 

#expected events  

 same problem with classical “cut” analysis 

 use control samples to test MVA-output distribution (y(x)) 

  Combined variable (MVA-output, y(x)) might “hide” problems in ONE individual variable more 

than if looked at alone  train classifier with few variables only and compare with data  



Systematic “Error” in Correlations 
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• Use as training sample events that have correlatetions 

• optimize CUTs 

• train an propper MVA (e.g. Likelihood, BDT) 

• Assume in “real data” there are NO correlations    SEE what happens!! 



Systematic “Error” in Correlations 
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•Compare “Data” (TestSample)  and Monte-Carlo 

(both taken from the same underlying distribution) 



Systematic “Error” in Correlations 
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•Compare “Data” (TestSample)  and Monte-Carlo 

(both taken from the same underlying distributions 

that  differ by the correlation!!!  ) 

Differences are ONLY visible in the MVA-output plots (and if you’d look at cut sequences….) 



(T )MVA and Systematic Uncertainties 

 

 Don’t be afraid of correlations! 
 typically “kinematically generated”  easily modeled correctly 

 “classical cuts” are also affected by “wrongly modeled correlations” 

 MVA method let’s you spot mis-modeled correlations!  

  “projections” of input variables  

 + the combined MVA test statistic “y(x)” ! 
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MVA and Systematic Uncertainties 

44 

Multivariate Classifiers  THEMSELVES  don’t have systematic uncertainties 

 even if trained on a “phantasy Monte Carlo sample” 

 there are only “bad” and “good” performing classifiers ! 

 OVERTRAINING is NOT a systematic uncertainty !! 

 difference between two classifiers resulting from two different training runs 

DO NOT CAUSE SYSTEMATIC ERRORS 

 same as with “well” and “badly” tuned classical cuts 

 MVA classifiers:  only select regions in observable space  

 

 

 Efficiency estimate (Monte Carlo)  statistical/systematic uncertainty 
 involves “estimating” (uncertainties in ) distribution of 𝑃𝐷𝐹𝑦𝑆(𝐵)   

 statistical “fluctuations”  re-sampling  (Bootstrap) 

 “smear/shift/change” input distributions and determine 𝑃𝐷𝐹𝑦𝑆(𝐵) 

 estimate systematic error/uncertainty on efficiencies 

 

 Only involves “test” sample.. 

  systematic uncertainties have nothing to do with the training !! 
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(T )MVA and Systematic Uncertainties 
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 minimize “systematic” uncertainties  (robustness) 

 “classical cuts” : do not cut near steep edges, or in regions 

of large sys. uncertainty  

  hard to translate to MVAs: 
 artificially degrade discriminative power (shifting/smearing) of 

systematically “uncertain” observables  IN THE TRAINING 

 remove/smooth the ‘edges’  MVA does not try to exploit them 

 First attempts to automatize this are on the way 

Signal Background 

 Note: if I KNEW about the error, I’d correct for it. I’m talking about 

‘unknown’ systematics 



How does this look in 2D? 

MVA-decision boundaries 

• Looser MVA-cut  wider 

boundaries in BOTH variables  

What if you are sure about the 

peak’s position in var1, but less 

sure about var0 ? 

• You actually want a boundary 

like THIS 

• Tight boundaries in var1 

• Loose boundaries in var0 
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Reduce information content 

 Here: one would for example “shift” 

such that signal and backgr. are less 

separated 

 

 However, that’s not “universal”  

 Looking for a general tool to ‘force’ any MVA algorithm, not to rely 

too much on exact feature: 

 Similar: early stopping techniques in Neural networks to avoid overtraining 

 reduce difference between “signal” and “background” 

 or  reduce information content in each, “signal” and “background” 
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Reduce information content 

 Looking for a general tool to ‘force’ any MVA algorithm, not to rely 

too much on exact feature: 

 Similar: early stopping techniques in Neural networks to avoid overtraining 

 reduce difference between “signal” and “background” 

 or  reduce information content in each, “signal” and “background” 

 

shift 

smear 

turn 
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Reminder: 

MVA-decision boundaries 

• Looser MVA-cut  wider 

boundaries in BOTH variables  

• You actually want a boundary 

like THIS 

• Tight boundaries in var1 

• Loose boundaries in var0 

 YES it works ! 
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Another example.. 

 Hmm… also here, I’d still say it does exactly what I want it to do 

 The difficulty is to ‘evaluate’ or ‘estimate’ the advantage 

(reduction in systematic  loss in performance) 
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peak on the edge 

AGAIN: assume uncertainty in position of peak in var0 

bad better  but by how much?? 
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Back to my “complicated” 3D 

example 
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ROC Cuve - Zoom 

53 

 compare: difference between red (what you think you have) and 

black (what your algorithm applied to nature might actually provide) 

 do this for solid (smeared) and dashed (unsmeared) classifiers  
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Overtraining 
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S 

B 

x1 

x2 

S 

B 

x1 

x2 

  how to choose ‘meta’ parameters “α” that determine the classifier ‘flexibility’   e.g.  

Number of Nodes in Neural network,  number of training cycles,  “size of 

neighbourhood (k)” in nearest Neighbour algorithms etc… 

 it seems intuitive that this boundary will give better results in another statistically 

independent data set than that one 

training cycles 

c
la

s
s
if
ic

a
io

n
 e

rr
o
r  

training sample 

True eff (estimated 

from test sample) 

possible overtraining is concern for 

every “tunable parameter” a of 

classifiers: Smoothing parameter,   

n-nodes… 

verify on independent “test” sample 

a 

Classifier is too flexible 

 overtraining 

𝛼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

Bias if ‘efficiency/performance’ is 

estimated from the training sample 



BDT performance vs #trees 
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For  background rejection of 99.9% (bkg. Eff. 0.1%)  

Notice: Best 

performance is at 

MaxDepth = 2 and 

Ntrees = 1000  

 

 That is NOT where 

the difference between 

true,test and training 

efficiency is minimal !!! 
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BDT: 

 

Training 

Efficiency 

 

Testing 

Efficiency 

 

True 

Efficiency 

 

for nominal 

background 

eff 10% 
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BDT: 

 

Training 

Efficiency 

 

Testing 

Efficiency 

 

True 

Efficiency 

 

for nominal 

background 

eff 0.1% 



And for Cuts ? 
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 Bias is fairly small, but for 99.9% bkg. Rejection still statistically significant: 

Training: effS = 6.5% 

Testing :          = 4.2% 

 True:               = 4.1 

 

Difference: 2%+- 0.06% 



Summary 
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Multivariate Classifiers (Regressors)   

  (fit) decision boundary (target function) 

 Generative Classifiers:  
 direct exploitation of Neyman-Pearson’s Lemma: (best test statistic is 

the Likelihood ratio )  direct pdf estimate in 

 Discriminative Classifiers: 

 multi-dimensional (and projective) Likelihood 

 classifiers that “fit” a decision boundary for given “model” 

 Linear:  Linear Classifier (e.g. Fisher Discriminant) 

 Non-Linear:  ANN, BDT, SVM  

 

 TMVA lets ou train/test understand/judge/improve your classifier 
 carefully study the control plots  

 compare different MVAs ! 

 find working point on ROC curve 

 

MVAs are not magic … just fitting 
 systematic uncertainties don’t lie in the training !! 

 estimate them similar as you’d do in classical cuts  



Backup and Left overs… 

60 Helge Voss INFN School of Statistics 2015 



Example distributions  
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BDT:  

MaxDepth = 2 

Ntrees = 1000 

 

Background Rejection 99.9% 

0.1% bkg events of 6000 bkg total in test and 

training sample = 6 events only   train and test 

sample are highly “anti-correlated” 

But what is this?  

True eff. Vs test eff. 

 Test eff. Is highly 

biased, too! 

 Again: “artefact” 

of the small 

event count. 

Test eff. 

T
ru

e
 e

ff
. 



Example distributions  
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BDT:  

MaxDepth = 2 

Ntrees = 1000 

 

Background Rejection 99% 

The correlation between test  and training efficiency 

is still there (1% bkg events of 6000 bkg total in test 

and training sample = 60 events !!) 

Bias between true 

and test eff. 

disappeares with 

larger event counts, 

despite train-test 

correlation still 

visible 

Test eff. 

T
ru

e
 e

ff
. 



Example distributions  
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BDT:  

MaxDepth = 2 

Ntrees = 1000 

 

Background Rejection  90% 

The correlation between test efficiency and training 

efficiency is almost gone, as the samples left and 

cut away are both big enough 

All correlations 

seem gone, we are 

only left with an 

ever smaller  bias 

between  between 

true (test) and 

training  eff.  

Test eff. 

T
ru

e
 e

ff
. 
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 Endless discussions about possible ‘problems’ with MVA 

(systematic etc) show: 

We (physicists) are smart and try to really understand what we are 

doing 

 But it also shows: 

 Sophisticated techniques are of course more difficult to grasp 

than ‘cuts’ 

 To tap into the extremely valuable resource of pattern 

recognition techniques, the ‘physicist way’ of everyone re-

inventing the wheel does not seem promising to me here. 

 



 MVA-Literature /Software 

Packages... a biased selection 
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Software packages for Mulitvariate Data Analysis/Classification 

  

 attempts to provide “all inclusive” packages 

 TMVA: Höcker,Speckmayer,Stelzer,Therhaag,von Toerne,Voss, arXiv: physics/0703039 

http://tmva.sf.net or every ROOT distribution (development moved from SourceForge to ROOT git repository) 

 WEKA: http://www.cs.waikato.ac.nz/ml/weka/     

 “R”: a huge data analysis library: http://www.r-project.org/  

 

 “new Boosted Decision Tree library” https://github.com/dmlc/xgboost Rie Johnson and Tong Zhang. Learning 

nonlinear functions using regularized greedy forest, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 36(5):942-954, May 2014. arXiv: 1109.0887v7.pdf 

 

 SciKit Learn http://scikit-learn.org/stable/  Machine learning in Python 

 Theano: Popular for implementing deep learning neural networks 

 

 CAFFE, Torch, …. You name them 

Literature: 
 T.Hastie, R.Tibshirani, J.Friedman, “The Elements of Statistical Learning”, Springer 2001 

 C.M.Bishop, “Pattern Recognition and Machine Learning”, Springer 2006 

 … 

 

http://tmva.sf.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
http://arxiv/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
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MVA’s are great 

MVA’s are widely used in HEP 

MVA’s are even “widelier” used outside HEP 

MVA’s are complicated to understand and to code ! 

MVA’s and work thereon still is not ‘funded’ buy HEP like 

“Detector/Accelerator development” for example is: 

 And I think we should have a much larger concentrated effort to put 

HEP to ‘state of the art’ in pattern recognition, then this one paid TMVA 

position I was unsuccessfully asking for! 



Summary 
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Linear classifiers :   y(x) = ‘linear combination of observables “x” ’ 

  decision boundary (y(x) = const) is a linear hyperplane 

 

Non linear classifiers:  y(x) =  ‘non-linear combination of observables “x” ’ 

  decision boundary (y(x) = const) is ‘any kind of hypersurface’ 

  parameterised e.g. “pieces of sigmoid functions’ 

   Neural Network 

 



Stability with Respect to 

Irrelevant Variables 
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Toy example with 2 discriminating and 4 non-discriminating variables ? 



Stability with Respect to 

Irrelevant Variables 
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Toy example with 2 discriminating and 4 non-discriminating variables ? 

use only two discriminant 

variables in classifiers 



Stability with Respect to 

Irrelevant Variables 
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Toy example with 2 discriminating and 4 non-discriminating variables ? 

use only two discriminant 

variables in classifiers 

use all discriminant 

variables in classifiers 



More Visualisation  

(following example taken from 

M.Schmelling) 

71 Helge Voss INFN School of Statistics 2015 

A simple K-short selection: 

consider all opposite tracks with 450GeV < Mπ-π+ 550GeV 

 reconstruct secondary vertex for those tracks  

 impact parameters 𝒅𝒊 (𝒅𝝅+ , 𝒅𝝅− , 𝒅 = 𝒅𝑲) 

 distance of closes approach between 2 tracks  𝒅𝒊𝒋 

 distance : primary – secondary vertex  𝒅𝒛 

 require the secondary vertex to lie “downstream”  Zsvtx – Zpvtx > 0 

 



More Visualisation  

(following example taken from 

M.Schmelling) 
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More Visualisation  

(following example taken from 

M.Schmelling) 
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Kolmogorov Smirnov Test 
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Tests if two sample distributions are compatible with coming 

from the same parent distribution 

 
Statistical test: if they are  indeed random samples of the same parent 

distribution, then the KS-test gives an uniformly distributed  value 

between 0 and 1  !! 

 

Note: that means an average value of 0.5  !! 

 

How does that look like for TMVA, where many people use the KS test 

to  check for “overtraining”  



Kolmogorov Smirnov Test 
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Default (ROOT)  

Setting option “X”  (default in 

TMVA since 4.2)  

 

 Uses random sample 

generated from the two 

distributions that need to be 

compared 

Distributions are not really “flat”  effect of  using binned histograms (to be checked…) 


