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Overirainirg S

" it seems intuitive that this boundary will give better results on another
statistically independent data set than that one

ée.g. stop training before you learn
statistical fluctuations in the data

—Include ‘regularisation’ in the model
—>verify on independent “test” sample

»

That is where
you want to be

l test sample

classificaion error

5. training sample

04

éovertraining IS concern for every
“tunable parameter” o of classifiers:
> Smoothing parameter, n-nodes...

X
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Cross Valiclaiion =4 =

" classifiers have tuning parameters “a” -> choose and control performance
" #training cycles, #nodes, #layers, regularisation parameter (neural net)
" smoothing parameter h (kernel density estimator)
.....

" more training data = better training results

" division of data set into “training” and “test” and “validation” sample? ®

Cross Validation: divide the data sample into say 5 sub-sets

Train Train Train Train Test

"train 5 classifiers: y;(x,a) : i=1,..5,
" classifier y;(x,a) is trained without the i-th sub sample

1 events

= calculate the test error: CV(a)=—— > L(y(x,a)) L:loss function

events K

" choose tuning parameter o for which CV(a) is minimum and train the
final classifier using all data



Neural Network Regularisaiiorn ==
How to control model complexity in Neural Networks:

= #nodes and # layers
= early stopping = very first (old) ‘reqularizer’ used
= Start with small random weights = sigmoid approximately linear -
essentially a linear model - stop before it deviates too much from that

=  Weight decay:
= add ‘regularizing’ term to the loss function L = L + %ZWZ
= Favour small weights - i.e. simpler models

= Dropout
= Randomly remove nodes during
each training step
= Essentially a large model
averaging procedure like ‘bagging”

(b) After applying dropout.




Whnat is tne oesi Networik Arcniisciure? ==
We (TMVA) used to say:
" Typically in high-energy physics, non-linearities are reasonably simple,
- 1layer with a larger number of nodes probably enough
-> still worth trying 2 (3?) layers (and less nodes in each layer)

But Higgs ML Challenge: - Won by a ‘Deep Neural Network’
- well... 3 hidden layers with 600
nodes each!

X $13,000 * 1,602 teams
H \995 Iﬂ Higgs Boson Machine Learning Challenge
challenge

- Did it win because if ‘learned’

B | piggehoson T categories, of different event classes

i S A

y UL that noone
= _ seemed to look at explicity?

Leaderboard

- Or was it just “collecting efficieny” in
corners that requires highly flexible
classifiers, hence VERY careful tuning
using extensive cross validation?

4. nhixShaze




David Rousseau tried to answer this: BUT:
TMVA was untuned ! And Gabor spent MANY MANY hours tuning !!
—> that is more than just an ‘unfair’ comparison.

Compare figure of merits:
(larger is better)

TMVA untuned: 3
TMVA tuned (Eckhard) 3.6

XGBoost tuned 3.7
Gabor 3.8
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TMVA VS Gabor

e A { AR

tmva all

tmva boosted

boosted category

e ———
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tmva vbi

aaaaaa

vbf, boosted categories as is ATLAS note (no
ATLAS insider information)

tmva, gabor are trained without categories,
on full 30 variables (not directly comparable
to ATLAS analysis)

(also significance is simple asimov, no bin, no
systematics (and fake tau missing))

Gabor improves more significantly in VBF
categories (2 jets =»events more complex)

David Rousseau HiggsML visits CERN, 19th May 2015 32



Overview =i

fur Kegrnrhysik

= Multivariate classification/regression algorithms (MVA)
= what they are

* how they work

= OQverview over some classifiers
= Multidimensional Likelihood (kNN : k-Nearest Neighbour)
= Projective Likelihood (naive Bayes)
» Linear Classifier

= Non linear Classifiers
= Neural Networks
= Boosted Decision Trees

= Support Vector Machines
= General comments about:

= Qvertraining

= Systematic errors
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Boosisc Decisiorn Tree

/
:
(|

S)

Decision Tree: Sequential application of cuts splits

the data into nodes, where the final nodes (leafs)
classify an event as signal or background

" Each branch - one standard “cut” sequence
" easy to interpret, visualised
" independent of monotonous variable .
transformations, immune against outliers
: ) { j > ch {xj < ch {xj > c3J {xj < C3J
" weak variables are ignored (and don’t e P4
(much) deteriorate performance) o @ @
" Disadvatage - very sensitive to statistical
fluctuations in training data = c4) (= <ca)

®  Boosted Decision Trees (1996): @

combine a whole forest of Decision Trees,
derived from the same sample, e.g. using

different event weights. - became popular in HEP since
MiniBooNE, B.Roe et.a., NIM 543(2005)

" overcomes the stability problem

" increases performance
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Growing 2 Decision Tree ==
= start with training sample at the root node

" split training sample at node into two, using a
cut in the one variable that gives best
separation gain

‘:‘:E L Signal -
: L : >19 . | - Background | “Q
" continue splitting until: i TR ORI & S

.. L
" minimal #events per node -
" maximum number of nodes 0.5
" maximum depth specified o
" (a split doesn't give a minimum separa-
gain) - not a good idea - see a
“chessboard” A

" leaf-nodes classify S,B according to the T T

majority of events or give a S/B var1

probability
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Decision Tree Pruning -

" Individual decision trees: Grown to large size and then pruned!

N=3000.000000
S/(S+B)=0.528

var4>-1.17
N=2563.230000
SI(S+B)=0.576
S/(S+B)=0.251 vard>1.48

Nodes N=436.773000

sssssssssss

Decision tree
after pruning

Decision tree before pruning

" Pruning algorithms are developed and applied on individual trees
" optimally pruned single trees are not necessarily optimal in a forest !
" Boosted Decision Trees are better limited in growth size (max depth) straight way

" optimal depth: “typically small O(<5) depending on ‘interaction’ between variables,
i.e. terms in ANOVA ‘expansion’) :

n(X) = Zi nl(Xl) + ZU an(Xl»X]) + Zijk Uijk(Xi»Xj»Xk) + ... with n(X) begin the target
(discriminating) function

XGBoost apparently has some ‘new’ regularizing scheme - probably
worth looking at

Helge Voss INFN School of Statistics 2015
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500stir¢

classifier
S o
1 re-weight
Weighted classifier
Sample CO(x)
re-weight
Weighted classifier
Sample CO(x)
1 re-weight
Weighted classifier
Sample CO(x)
1 re-weight
=
Weighted classifier
Sample CM)(x)

Helge Voss
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y(X) =

NCIassifier

w.CY(x)
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Acdzoiive Boosiing (AcdzaBoosi) =

classifier
TS oo
1 re-weight
Weighted classifier
Sample CO(x)
re-weight
Weighted classifier
Sample CO(x)
1 re-weight
Weighted classifier
Sample CO)(x)
1 re-weight
=
Weighted classifier
Sample CM)(x)

Helge Voss
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" AdaBoost re-weights events

misclassified by previous classifier by:

-t with :

err

misclassified events
all events

err

" AdaBoost weights the classifiers also
using the error rate of the individual
classifier according to:

Nejassifier 1 f () _
y(X) = Z log f(l)err (')(X)

l err

12



AcdzBoosit: A sirmole demonsiraiion ==

The example: (somewhat artificial...but nice for demonstration) :
 Data file with three “bumps”
» Weak classifier (i.e. one single simple “cut” <« decision tree stumps )

2-5 ¥ Isiéhlalll TTTT LI ||||I||||I:
777 Backgrcund ]

Normalised

var(i) >x  var(i) <= X

1.5;— b)

" A\

15 1 45 0 0.5 1 1.5
varQ

LID-flow (S,B): (0.0, 0.0)% J (0.0, 0.0)%

a) Var0 > 0.5 2 £4,=66% ¢,,, = 0% misclassified events in total 16.5%
or

b) Var0 < -0.5 2 £4,=33% €, = 0% misclassified events in total 33%

sig

the training of a single decision tree stump will find “cut a)”



Normalised

AcdzBoosit: A sirmole demonsiraiion ==
The first “tree”, choosing cut a) will give an error fraction: err = 0.165

=» before building the next “tree”. weight wrong classified training events by ( 1-err/err) ) =5

=» the next “tree” sees essentially the following data sample:

25T Sgnal ] g 25[Slgnal T TS _
7] Background : re-weight E /7] Backgi ound 1.. and hence will
2 ; . § °f ' Jchose: “cutb)”:
150 'g 15 { VarO < -0.5
i % —— "
A
nE M //!!‘.E.... [l I]:
15 -1 05 0 05 1 15 -
var
k] q | sighdal” ~ " | -
E 100 Background _:
The combined classifier: Treel + Tree2 = soff =
the (weighted) average of the response to oo [ 3%
a test event from both trees is able to i <
g 40 [— 1=
separate signal from background as : z
good as one would expect from the most ~ *° [ T%
powerful classifier ol v v v vl S
-1 -0.8 -0.6 -0.4 -0.2 Q

BDT response



A Srzigilez] YigW of Boogilng” (Frladmzn)
1998 sial)

Boosted Decision Trees: two different interpretations

1. give events that are “difficult to categorize” more weight and average
afterwards the results of all classifiers that were obtained with different weights

2. see each Tree as a “base classifier’” of an additive classifier ensemble
nTrees

y(x;a,0) = E a;T;(x;0)
L
-> boosting: “greedy” (i.e. each step just adds a new classifier to the

ensemble w/o modifying the current ensemble) optimization of y(x; a,8) w.r.t a
specific ‘loss function’

- AdaBoost: “exponential loss function” L = exp(—y*"y(x; a,8)) where
ytrain = 1 (signal), yt"¢" = —1 (backgr.)

- Optimizes ‘log odds’, i.e. y?¢5!(x) = %1 _I’jg"’g

Helge Voss INFN School of Statistics 2015 15



Cracliznt Boost == 22

= AdaBoost: Exponential loss L = exp(—y 7™ y(x; a, 0)) = sensitive to outliers

" Gradient Boost:

éimplement “boosting” with arbitrary “loss functions” by approximating the
gradient of the loss function

—2>Which loss function actually gives us the proper ‘bernulli proability’
distribution for the fitted P(S

—2 Binomial log-likelihood loss In(1 + exp( -2y"@ny(a,x)) = more well
behaved loss function, (the corresponding “GradientBoost” is
iImplemented in TMVA)



Beagjeing arne Rancdornisecd Trees =

" Bagging:
" combine trees grown from “bootstrap” samples
(i.e re-sample training data with replacement)

" Randomised Trees: (Random Forest: trademark L.Breiman, A.Cutler)
" combine trees grown with:
" random bootstrap (or subsets) of the training data only

" consider at each node only a random subsets of variables for
the split

" NO Pruning (despite possibly larger trees than AdaBoost) !

" or any “combination” of Bagging/Randomising/Boosting

" These combined classifiers work surprisingly well, are very
stable and almost perfect “out of the box™ classifiers



Szl Toy NG =

m Performance achieved without parameter adjustments:

nearest Neighbour and BDTs are best “out of the box”

Theoretical maximum

Background rejection versus Signal efficiency \

‘: 3_ ™
o L
S
2__
1t
of
2 v
- ' =
C . o
3E e o g g T b1
-3 0 2 3 .E.
var0 @
. s
Events weighted by SVM response §
o
‘ Signal and background distributions weighted by SVM_Gauss output | E
-
t: 3_' LI ‘ LI ‘ LI ‘ T I-TT ‘ LI ‘ LI |_ u
g :‘.'5"
2 .
1 .
of .
.1} .
.2:— ]
C : 90
_l | | ‘ 1111 ‘ 1111 ‘ 1111 ‘ 1111 ‘ 1111 |
3 -2 0 2 3
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m After some parameter tuning, also SVM und ANN(MLP)
perform
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Geaneralisec Class

fler Boosiineg =

m Principle (just as in BDT): multiple training cycles, each time wrongly
classified events get a higher event weight

classifier
~ Taining Sample COWX)

Helge Voss

1 re-weight
Weighted classifier
Sample CO(x)
re-weight
Weighted classifier
Sample CO(x)
1 re-weight
i
Weighted classifier
Sample Cm)(x)

INFN School of Statistics 2015

Nejassifier 1 f () _
y(X) = Z Iog( f(I)err }:(')(X)

i err

Response is weighted sum
of each classifier response

19



AdaBoosi On 2 linsar Classifier (2.¢). Fishar) \\\\p

fur hysik

J. Sochman, J. Matas, cmp.felk.cvut.cz

Start with a problem for which a linear classifier is weak:

Helge Voss INFN School of Statistics 2015 20



AdaBoosi On 2 linsar Classifier (2.¢). Fishar) %;\g\

g‘%smut
hysik

t =40 @

s&p %

Helge Voss INFN School of Statistics 2015 21



Sugoort Vecior Vacnines

= Neural Networks are complicated by finding the proper
optimum “weights” for best separation power by “wiggly”
functional behaviour of the piecewise defined separating
hyperplane

= KNN (multidimensional likelihood) suffers disadvantage that
calculating the MVVA-output of each test event involves
evaluation of ALL training events

= |f Boosted Decision Trees in theory are always weaker than a
perfect Neural Network



; rY -~ s T ' - A2
Suooori Vecior Vlaerine = =
There are methods to create linear decision boundaries using only measures of
distances (= inner (scalar) products)
= - leads to quadratic optimisation problem

The decision boundary in the end is defined only by training events that are
closest to the boundary

suitable variable transformations into a higher dimensional space may allow
separation with linear decision boundaries non linear problems

—> Support Vector Machine



Sugoori Vecior Vi

" hyperplane that separates S from B

" Linear decision boundary

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane

" |If data non-separable add misclassification cost
parameter C-%.& to minimisation function

" Solution of largest margin depends only on
inner product of support vectors (distances)

> quadratic minimisation problem

Helge Voss INFN School of Statistics 2015

Non-separable data

24



Sugoort Vecior Vacnines

" hyperplane that separates S from B

" Linear decision boundary

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane
" |If data non-separable add misclassification cost

parameter C-3. to minimisation function UGS

" largest margin - inner product of support vectors
(distances) - quadratic minimisation problem

Non-separable data

" Non-linear cases:
" Transform variables into higher dimensional feature space where again a linear
boundary (hyperplane) can separate the data

Helge Voss INFN School of Statistics 2015



Supoort Vector Vzcnines =y =

_____________________

Find hyperplane that best separates signal
from background
" Linear decision boundary

\

HabrraRimdata

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane

" |If data non-separable add misclassification cost
parameter C-%.& to minimisation function

" largest margin - inner product of support vectors
(distances) - quadratic minimisation problem

Nep

Non-linear cases;

" non linear variable transformation - linear separation in transformed feature space
" no explicit transformation specified = Only its “scalar product” x:x = ®(x)-®P(x) needed.

" certain Kernel Functions can be interpreted as scalar products between transformed
vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid

" Choose Kernel and fit the hyperplane using the linear techniques developed above

» Kernel size paramter typically needs careful tuning! (Overtraining!)



Suooort Vecior Viacnines ==

= How does this “Kernel” business work?
= Kernel function == scalar product in “some transformed” variable space

-

- standard: x-y =Y x;y; = |x||y| * cos(6)
- large if :

-

X -y are in the same “direction”
- zeroif: x-y are orthogonal (i.e. point along different axes / dimension)

> e.g. Gauss kernel:  ®(%) - ©(y) = K(X,y) = exp(— (f_i)z)

202

- zero if ponts: x and y “far apart” in original data space

—> large only in “vicinity” of each other

= o < distance between training data points:
— each data point is “lifted” into its “own” dimension

—> full separation of “any” event configuration with decision boundary along
coordinate axis

—> well, that would of course be: overtraining



SVM: the Kernel size parameter: =
example: Gaussian Kernels
varQ

= Kernel size (o of the Gaussian) choosen * Kernel size (o of the Gaussian) choosen

too large: = not enough “flexibility” in the propperly for the given problem

underlying transformation

| Signal and background distributions weighted by SVM_Gauss output | | Signal and background distributions weighted by SVM_Gauss output
colour code: 1§ O ;
Red - large signal D_ O i
probability: 1_ Oi ;
vt -3 -2 -1 0 1 2 vai1

Helge Voss INFN School of Statistics 2015
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Overvisw

= Multivariate classification/regression algorithms (MVA)
= what they are

* how they work

= OQverview over some classifiers
= Multidimensional Likelihood (kNN : k-Nearest Neighbour)
= Projective Likelihood (naive Bayes)
» Linear Classifier

= Non linear Classifiers
= Neural Networks
= Boosted Decision Trees

= Support Vector Machines
= General comments about:
= Overtraining

= Systematic errors

Helge Voss INFN School of Statistics 2015
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Max-R|anck:Institut

fir Kegniphysik
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See sorme Classifiers at Work ==

= “generative models”:

= KNN/Likelihood = PDF estimators = y(x) = S &lstgnal)

PDF(x|Bkg)

= “discriminative models”
= (non-)linear model y(x) = Yw;h(x) : h(x) — basis function of
model
= Fisher Discriminant, Logistic Regression, Neural Networks

= Boosted Decision Trees: belong here: do you see what h(x) is in
that case?

= SO dO SVM (linear model in transformed variable space = it’s just expressed
not directly as “sum over basis functions)

H™ J Signal =~ | 3
= B~Z7] Background =

L
L

Normalized
£
T
|

— y(x) for each event:
- P(S|x)
— pose cut on P(S|x)
— weigh event with P(S|x)

- [

- n L] &
TTTTTTTTTTTT]TT

| | | |

=
i




Deacisiorn Bourclaries

><‘:|4? R '_' '|:_' .'_ -'."-" |..1.--."'| T I_|_| L AL I LR UL R i

1.2 o

MLFP

BDT
0.6
0.4
0.2F LD
0 Likelihood

-0.2
-0.4-
-0.6
-0.8
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Finzl Classifier Perforrnancs

m Background rejection versus signal efficiency curve:

Background rejection versus Signal efficiency TMVA

Background rejection

1
0.9
0.8
0.7
0.6
0.5
0.4

0.3 —
0.2
01—

............ |_||(e||hggd
leellhoodPCA : : : '

—— Flsher

%

014 02 03 04 05 06 07 083 09 1
Signal efficlency

Circular
Example

Helge Voss
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Fisher: classifier contours
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Likelihood: classifier contours
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Visualisziion in 9 Variaoles ==

testing sample

training sample

0 some number of signal and background candidates in training
=» same statistical power to estimate PDFs

O imbalanced samples in testing
=» gauge performance under realistic conditions
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stelszitiorn of Decision

r / ~l - ek s
e )u r] [ Likelithood-3D: optimal cut contour

Fisher-3D: optimal cut contour
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General Acdvice for (MVA) Analyses =«=

There is no magic in MVA-Methods:
» no need to be too afraid of “black boxes” - they are not sooo hard to understand
» you typically still need to make careful tuning and do some “hard work”™
» no “artificial intelligence” ... just “fitting decision boundaries” in a given model

The most important thing at the start is finding good observables
» good separation power between S and B
» little correlations amongst each other
» no correlation with the parameters you try to measure in your signal sample!
Think also about possible combination of variables

» this may allow you to eliminate correlations
= rem.: you are MUCH more intelligent than what the algorithm

Apply pure preselection cuts and let the MVA only do the difficult part.

“Sharp features should be avoided” - numerical problems, loss of
information when binning is applied

» simple variable transformations (i.e. log(variable) ) can often smooth out these areas
and allow signal and background differences to appear in a clearer way

Treat regions in the detector that have different features “independent”
» can introduce correlations where otherwise the variables would be uncorrelated!



L

(e YORSINYREIASSIHENSTNE 8

m Multivariate training samples often have distinct sub-populations of data

A detector element may only exist in the barrel, but not in the endcaps

A variable may have different distributions in barrel, overlap, endcap regions

m Ignoring this dependence creates correlations between variables, which
must be learned by the classifier

Classifiers such as the projective likelihood, which do not account for correlations,
significantly loose performance if the sub-populations are not separated

m Categorisation means splitting the data sample into categories defining
disjoint data samples with the following (idealised) properties:

Events belonging to the same category are statistically indistinguishable

Events belonging to different categories have different properties

m In TMVA: All categories are treated independently for training and
application (transparent for user), but evaluation is done for the whole
data sample (= buhuhu... fails if y(x) is NOT P(S|x) !!')



T MVA cCzisqories = =

- TMVA Categories: one classifier per ‘region’
= ‘regions’ in the detector (data) with different features treated independent
» improves performance

» avoids additional correlations where otherwise the variables would be
uncorrelated!

_ Recover optimal performance after
WVA Input Variables: var4 | L . )
Ty splitting into categories

0.45
04;
035°
0.3;
0.25F
0.2
015}
0.1F
0.05F
0 bul

| Background rejection versus Signal efficienty |
1 LI I T

TMVA

(1/N) dN/0.134

0.0 o

leta] > 1.3

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

0.8 [N PN

0.7

Background rejection
TTTT

e
S o

)
%:
- 2

o) SN NS OO N AP WO U D SO . W
Y © _ -
E .: ‘ THMVA |nPUt Variables: vard ‘ 0 6 :_.,,,_. ECRTTTTOE A, NN SR T
S s g, T, o N\
-q)- q) m E 0_4? ég 0_5 :_MVAMetI:]Gd_ ............ ............... , ............... ................ ..........
— — 3 0 18 - —— FisherCat |
Q E g 0-3? E ;\i 0-4 E._ ........... ............... LikelihOOdcat ...... D ................ ................ ................ .........
€9 VToxs - —— Fisher
(ﬁ E 02§ é \.i 0.3 :_ ........... .............. Likelihood ............. _ .............. ................ . ...........
NE = SRR FUUUE PR DUUUE TR UUUR TUUVE FUUUE TN -
Wo o oot EF %20""01 02 03 04 05 06 07 08 09 1

E 19

0 bt Signal efficiency

var4
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Sorme Words 20oui Sysisrnaiic Erffors ==

" Typical worries are:
® What happens if the estimated “Probability Density” is wrong ?
® Can the Classifier, i.e. the discrimination function y(x), introduce systematic uncertainties?
" What happens if the training data do not match “reality”

P(x]|S)
P(x|B)
élmperfect (calling it “wrong” isn’t “right”) y(x) -> loss of discrimination power

that’s all!
—>classical cuts face exactly the same problem, however:

—> Any wrong PDF leads to imperfect discrimination function  y(X) =

in addition to cutting on features that are not correct, now you can also “exploit”
correlations that are in fact not correct

" Systematic error are only introduced once “Monte Carlo events” with imperfect modeling are

used for
" efficiency; purity ® same problem with classical “cut” analysis
m#expected events ® use control samples to test MVA-output distribution (y(x))

" Combined variable (MVA-output, y(x)) might “hide” problems in ONE individual variable more
than if looked at alone - train classifier with few variables only and compare with data

Helge Voss INFN School of Statistics 2015 39



SYstaretle P 2rror” 1) Corralnjons  se =

| Correlation Matrix (signal) |

Q

Linear correlation coefficients in %

100
80

* Use as training sample events that have correlatetions

* optimize CUTs N
e train an propper MVA (e.g. Likelihood, BDT) 2
0
[ TMVA Input Variable: var1 | [ TMVA Input Variable: var2 | 20
k-] Sianal '] T T g g 05 =40
3 0.5 Sional 1 & 0
E 0.4 Background ‘é E e é_‘
mank 1 iz C =
| Background rejection versus Signal efﬁmency TMVA Background rejection versus Signal efficiency TMYVA
: 1 IIIIII!IIII!IIII!IIII!IIII.IIII!IIII_ : 1 } f" ||.||||!||||.||||!||||
o ; ; ; ; ; ; ] o : ; ; ;
- i -
E 0.9 i 0.9
g g
° - 0.8
£ -
E ................................................................................................................................................................. e 0.7
g
s S 06
0.5
MVA Method 5 _
0.4 N ................. cutSGA ...... 0.4
: : : : : : : ; i 035 CUtSGA : ; ; ; ]
02||||i||||i||||i||||iuuuui||||i||||i||||i||||i|||| 0_2_1lll|||ll||||||||ll|llll|||||||||||||||||||||||||_
o 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Signal efficlency Signal efficlency

- Assume in “real data” there are NO correlations - SEE what happens!!
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Compare “Data” (TestSample) and Monte-Carlo
(both taken from the same underlying distribution)

oystematic "Error” in Correlati

0.45
0.4

Normalised

035}
03¢
0.25F
0.2¢
015
0.1F
0.05F
n E

Normalised

0.4f

03}

[ TMVA Input Variable: var1 | [ TMVA Input Variable: var2 |
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g Z [
e 1= 0.3
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— q=
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e e 0.2}
- 1s ;
2 3% 0.4}
%\‘4‘ i |
E 15 [
[ ol
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| TMVA Input Variable: var3 | [ TMVA Input Variable: vard |
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. 1 8 o4f
[l o
7 E 0.35F
] 5 :
= 03F
] 0.25f
0.2}

02}

0.1}

0.15F
0.1f
0.05F

UO-flow (S,B): (0.0, 0.0)% / {0.0, 0.0)%

Helge Voss

var3
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WIO-flow (S,B): (0.0, 0.0)% / {0.0, 0.0)%

WIO-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

\ TMVA overtraining check for classifier: MLP |

TMVA

.ﬁaoo

500
400
300
200

100

Ho 1] Signal(test kample)” ™
5@ Background (test sample)

- IE.i‘gnél (*rai'niﬁg éar\"lplb) i

« Background (training sample)

L
o

;(Tmogorov-Smirnov test: signal (background) probability = 0.997 {0.424)

A 05 0

3
]

MLP response

\ TMVA overtraining check for classifier: BDT |

TMVA

Normalized
[\*]
3

_|_|§ig|nai (test sample) = |

T@ Background (test sample)

-'Sibnél (irainiﬁg éan"lplle) L

a Background (training sample)__

Kelmogorov-Smirnov test: signal (background) proBability = 0.0178 (0.0209)

W A _ i
0 0.2 04
BDT response

ONISHE. %

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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Compare “Data” (TestSample) and Monte-Carlo
(both taken from the same underlying distributions  g12eo [Fysiohdi sl sahpia) T | = Slondi {raihing sampie) " ]

SYiaretle P 2rror” 1) CorralErlons =

that differ by the correlation!!! )

[ TMVA Input Variable: var1 |

0.45
0.4

Normalised

0.3
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0.15
0.1
0.05

0.35¢

[ TMVA Input Variable: var2 |

Normalised
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EER:
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= 15 0.1f
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TMVA Input Variable: var3 TMVA Input Variable: vard
P P
0_5-||||||||||||||||||||||||| TTTT ||||||||||||_: E-] =B T T T TTT T T T T

. 1 8 o4f
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12 E 1.'I.35E
12 2 o3
1= 0.25F
12 o
1z F
1s 0.2p
= E
1= 0.15F
-ﬂI' o
? 01
12 0.05F

Differences are ONLY visible in the MVA-output plots
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WIO-flow (S,B): (0.0, 0.0)% / {0.0, 0.0)%

WIO-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

| TMVA overtraining check for classifier: MLP | VA

H7”] Background (test sample) | | « Background (training sample) -

s
§1000 :ﬁolmogorov-&mirnov test: signal {background) probability = 0( 0)
=

200 |7

T TT |I I,,h_'l LI | T
— HH
11 ‘ 111 |I 11 | L1 | | 11 I|

1
U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

MLP response

TMVA overtrainﬁ check for classifier: BDT | TMVA

jjéig' (1'|esis'an4plle)I tT I--‘S-‘igllnall(tr"aihir*g éahp‘le)' i :'

7] kground (test sample) | | a Background {training sample) 7|

250 7orov-3mlrnov test: signal (background) pﬁbabilﬂy = 0( O

i

Normalized | |

Il\\llll\\llll\lllll\l
L/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

0708 06 04 02 04
BDT response

(and if you'd look at cut sequences....)
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(T )MVA :nd sysiemziic Unceriziniiss ==

> Don’t be afraid of correlations!

typically “kinematically generated” - easily modeled correctly
“classical cuts” are also affected by “wrongly modeled correlations”
MVA method let’s you spot mis-modeled correlations!

> “projections” of input variables

> + the combined MVA test statistic "y(x)" !




MIVA and Sysieraiic Unceriainiies =« =

= Multivariate Classifiers THEMSELVES don’t have systematic uncertainties
—> even if trained on a “phantasy Monte Carlo sample”

= there are only “bad” and “good” performing classifiers !
= OVERTRAINING is NOT a systematic uncertainty !!
= difference between two classifiers resulting from two different training runs

DO NOT CAUSE SYSTEMATIC ERRORS
= same as with “well” and “badly” tuned classical cuts
= MVA classifiers: - only select regions in observable space

= Efficiency estimate (Monte Carlo) - statistical/systematic uncertainty
= involves “estimating” (uncertainties in ) distribution of PDE,

= statistical “fluctuations”™ - re-sampling (Bootstrap)
= “smear/shift/change” input distributions and determine PDF,

Ys(B)
— estimate systematic error/uncertainty on efficiencies

S(B)

= Only involves “test” sample..
= systematic uncertainties have nothing to do with the training !!
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T )MVA ane Sysiematic Unceariaintjes

U
1
l

0 minimize “systematic” uncertainties (robustness)

-> “classical cuts” : do not cut near steep edges, or in regions
of large sys. uncertainty

> hard to translate to MVAS:

artificially degrade discriminative power (shifting/smearing) of
systematically “uncertain” observables IN THE TRAINING

> remove/smooth the ‘edges’ > MVA does not try to exploit them
First attempts to automatize this are on the way

b
= £ L \‘
. —-—-—/-4’/ ‘s\k\‘.‘m
Signal Background

= Note: if | KNEW about the error, I’d correct for it. I'm talking about

‘unknown’ systematics
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“

J,

rnow cloes inis look in 207 e

MVA-decision boundaries

var1

« Looser MVA-cut = wider

boundaries in BOTH variables

What if you are sure about the
peak’s position in var1, but less
sure about varQ ?

* You actually want a boundary
like THIS

« Tight boundaries in varl

e Loose boundaries in varQ

Helge Voss INFN School of Statistics 2015



Reduce inforration content ==
= Looking for a general tool to ‘force’ any MVA algorithm, not to rely
too much on exact feature:
= Similar: early stopping technigues in Neural networks to avoid overtraining
- reduce difference between “signal” and “background”
- or reduce information content in each, “signal” and “background”

e
d‘!“ - L]
LR = Here: one would for example “shift”

- such that signal and backgr. are less

- separated

1s00 [ [

1000 ||

= However, that’s not “universal”

Variable 0 [units]
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Reclucs inforrnation cornisnt =
= Looking for a general tool to ‘force’ any MVA algorithm, not to rely

too much on exact feature:

= Similar: early stopping technigues in Neural networks to avoid overtraining
-> reduce difference between “signal” and “background”

- or reduce information content in each, “signal” and “background”

Variable 1 Variable 2
II|II E : III|IIII T TT T TT rTTT E IIII|I
7 5 3500— ]
. o800 . g T
e b b
] z =z t
. 5000 - ] 2500 — —
] - ] 2000 [ : * .
1 oo} L : _ 5 smear -
7 so00 - t J 1500 — —
] 2000 — - 1 1000 — P 1 -
| v i - H .. i
1000 — 500 -
- L, - [ I.._ 1 el v L, |
II:|,|||||||||||||||||||||||||||||||.‘--1-' o""l""l"" o DRI u|||||||||||||||||||||"--
1 2 3 4 5 1] T B e} 1 2 3 4 5 1] 1 2 3 4 5
Variable 0 [units] Variable 1 [units] Variable 2 [units]

Helge Voss INFN School of Statistics 2015
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{

Rernincler: =

vari

MVA-decision boundaries

e Looser MVA-cut = wider

boundaries in BOTH variables

* You actually want a boundary

Ilke THIS varQ

« Tight boundaries in varl

vari

e Loose boundaries in var0QO

= YES it works !
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Anoiner exarnole.. -

{

= Hmm... also here, I'd still say it does exactly what | want it to do
= The difficulty is to ‘evaluate’ or ‘estimate’ the advantage

(reduction in systematic €= loss in performance)

vari
vari
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AGAIN: assume uncertainty in position of peak in var0Q

bad

vari

better

vari

Helge Voss

INFN School of Statistics 2015

but by how much??

E 0.05_ T T T .1 T.L.1 L T .1 L i
= i |
= r |
- H
'2 0-04: Sys. error reduction in €{Sig} 1l
3 1
2 L |
S003____ BEg;, tor same by rej) SE@r-NoSmear {|
3 | _
E L
£ 0.02
Cﬁ. -
S L
(1) |
0.01 -
G: i
04 02 0 02 04 06 08 1

MVA-cut value

o1
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05, Q1
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scomplicate sl

[E )
—— N q-‘._
l
St
Var0 Sig Var1 Sig Var2 Sig Var0-vs-2 Sig Vari-vs-2 Sig
3000 -‘= 4500 2500
H 4000 L
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E 3500 r
d 3 L
2000~ 3000 [
H 1500
. 1 2500 [
1500~ ' 3, [
2000 [
i A 1000
1000~ - 1500 [
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G, 1000 so0
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o
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. -
- 09—
0.7—
| —— sys wrong ROC curve
0.6— —trie+ wrong ROC curve
- —true- wrong ROC curve
— mEmmm———— sys wrong ROC curve (unsmeared)
| sssssssss true+ wrong ROC curve (unsmeared)
05 — rrrrrrasamanaaaaay true- wrong ROC curve (unsmeared)
1 1 I

Helge Voss

1 | 1
0.9 1

Signal eff.
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ROC Cuve - Zoorr) <

» compare: difference between red (what you think you have) and
black (what your algorithm applied to nature might actually provide)

= do this for solid (smeared) and dashed (unsmeared) classifiers

=' | ! | I T T T T I T T T T | T T T | ]
) L el —
> — Teel sys wrong ROC curve ]
oM 0.78— ... Seal true+ wrong ROC curve —]
- - e A. true- wrong ROC curve ]
- e, 08 e e sys wrong ROC curve (unsmeared) ]
0.77 — I """"" true+ wrong ROC curve (unsmeared) A -
— NG b ssssrssssmasaaanan true- wrong ROC curve (unsmeared) I —
0.76 — 1 =
- [ .
0.75— : —
L Tl N | -
0.74— T 0 —
0.73[— —
- ! N

0.84 0.89 0.9 0.91
Signal eff.
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Overiraining SHESS
" how to choose ‘meta’ parameters “a” that determine the classifier ‘flexibility’ e.g.

Number of Nodes in Neural network, number of training cycles, “size of
neighbourhood (k)” in nearest Neighbour algorithms etc...

" it seems intuitive that this boundary will give better results in another statistically

IICEREMeIE SRl S20 e el Sne —>possible overtraining is concern for

every “tunable parameter” o of
classifiers: Smoothing parameter,
n-nodes...

—2>verify on independent “test” sample

Classifier is too-flexible
—> overtraining

True eff (estimated

E" from test sample)

\ 5, training sample
94

aoptim l

»

classificaion error

Bias if ‘efficiency/performance’ is
> estimated from the training sample




{

SDT ogrforrmarncs vs #irges =
For background rejection of 99.9% (bkg. Eff. 0.1%)

average True efficiency (maxDepth=1) average True efficiency (maxDepth=2)

Notice: Best

=z 0.4 I I I T T T '2—0'4 rrrrrrrrr e :
- 1 150 ] performance is at
g 1 8, 1 MaxDepth =2 and
= 03 3 s 0. :
s ] Soss 1 Ntrees = 1000
2 0.25 -] ; :
g 0.2 - 02 - .
: = That is NOT where
0.15 - 0.15 - ;
] o ] the difference between
0.1 - . - ..
B Trueeff. . =Trueeff- i1 true,test and training
0.05 B Train eff. E ' Train eff. E iCi i ini 1
T e BT, efficiency is minimal !!!
% 200 400 600 800 1000 0 200 400 600 800 1$00
e
7z 05 T T TS '9_?0-5---|---|---|---|---|-E F 05 B Ll s

0.1 B True eff. 3 0.1 = True eff. 3 0.1 B True eff. 3
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0,,,|,,,|,,,-Ieste,ﬂ.,,|,5 c""---'----:resteﬂ*-'-: G...I...I...-Testeﬂm.l.:
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Trees Trees Trees



BDT:

Training
Efficienc

Testing
Efficienc

True
Efficienc

for nominal

background
eff 10%
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average True efficiency at 0.1 bkg
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| average Training efficiency at 0.001 bkg1

| average True efficiency at 0.001 bkg
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And for Cuts ? i

Bias is fairly small, but for 99.9% bkg. Rejection still statistically significant

Training: effS = 6.5% moof 2502-
Testing : =4.2% 6°°§- o}
True: =4.1 *°H E -

a00{ 3 150
. 0 0 300H = 100k
Difference: 2%+- 0.06% ; ; :
200 -
! 3 50
1004 - [
Gl' TP FVPT PV TRV TROTE PPN FRPH PPN POOP: 0 ]
0 0.010.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.05 0.1 0.15 0.2 0.25 0.3
estimated error on Sianal Eff. Signal Eff.
Training EffS (at 0.01 %bkg Training EffS (at 0.1 %bkg
-lllllllllllllllllllllllllllllllllllllll- 450:-llllllll|lllllllllllllIIlllllllllllllllllllllll-:
300f — Traiping - 400p ~—Training H E
[ ] 350F -
=% E cmoE E
F —Te ng : —Testing
200 -] 250F -
150F 3 200f- 3
: 3 150F -
100F - E 3
L . 100 -]
sof- . suf— —
G:....l ..... [T PP PP PO PP, 3 (L PP PP PP PP P i, tlesod]
0 01 02 03 04 05 0.6 07 OB 09 1
0 01 02 03 04 05 06 07 0.8
Slgnal Eff. Slgnal Eff.
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SLnzEry =

= Multivariate Classifiers (Regressors)
- (fit) decision boundary (target function)

= Generative Classifiers:
direct exploitation of Neyman-Pearson’s Lemma: (best test statistic is
the Likelihood ratio ) = direct pdf estimate in
Discriminative Classifiers:

= multi-dimensional (and projective) Likelihood

classifiers that “fit” a decision boundary for given “model”
= Linear: Linear Classifier (e.g. Fisher Discriminant)
= Non-Linear: ANN, BDT, SVM

= TMVA lets ou train/test understand/judge/improve your classifier
carefully study the control plots
compare different MVAS !
find working point on ROC curve

= MVASs are not magic ... just fitting
systematic uncertainties don't lie in the training !!
estimate them similar as you’d do in classical cuts
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2xarnole distrioutions =

BDT: Background Rejection 99.9%
MaxDepth =2
Ntrees = 1000 0.1% bkg events of 6000 bkg total in test and

training sample = 6 events only - train and test
sample are highly “anti-correlated”

Binom err estimate EffS (at 0.001 bkg rejection Training EffS (at 0.001 bkg rejection

:: 1 But what is this?
k| | True eff. Vs test eff.
wi | | > Test eff. Is highly

biased, too!

2
t
o
a3
[
m
e

" - Again: “artefact” =

of the small
event count.

Helge Voss INFN School of Statistics 2015 TeSt eff c



Exarnole distrioutions = =

BDT: Background Rejection 99%
MaxDepth =2
Ntrees = 1000 The correlation between test and training efficiency

is still there (1% bkg events of 6000 bkg total in test
and training sample = 60 events !!)

Bias between true
and test eff.
disappeares with
larger event counts,
despite train-test
correlation still
visible

 Binos Training EffS (at 0.01 bkg rejection

1000

- —Training

B0
3

F —Testi

600
-

0. O 0,03 N . £
estimabed error on Signal Efi. Signal EH.

Test Vs Training EffS (at 0.01 bkg rejection

L L
0.5 ﬁ.h 0.7 0.5 B

u'il. ﬁ.;E Ii.lﬁ n.;s n..s ﬁ.h Ii..? 0.;5 B
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BDT:

2xarnole disiriouiions

Background Rejection 90%

MaxDepth =2

Ntrees = 1000

Helge Voss

Test Vs Training EIfS (at 0.1 bkg rejection
1 L] L] L] L] L]

efficiency is almost gone, as the samples left and
cut away are both big enough

= All correlations

seem gone, we are
only left with an
ever smaller bias
between between
true (test) and
training eff. R L

== ——Training

wf- ~—Testing

INEN School of Statistics 2015 Test eff.

The correlation between test efficiency and training



2008 7 -

= Endless discussions about possible ‘problems’ with MVA
(systematic etc) show:
= We (physicists) are smart and try to really understand what we are
doing
= But it also shows:
= Sophisticated techniques are of course more difficult to grasp
than ‘cuts’
= To tap into the extremely valuable resource of pattern
recognition techniques, the ‘physicist way’ of everyone re-

Inventing the wheel does not seem promising to me here.



SEIHENRE
racKages,,, @ olased selection

Literature:

" T.Hastie, R.Tibshirani, J.Friedman, “The Elements of Statistical Learning”, Springer 2001
" C.M.Bishop, “Pattern Recognition and Machine Learning”, Springer 2006

Software packages for Mulitvariate Data Analysis/Classification

" attempts to provide “all inclusive” packages
" TMVA: Hocker,Speckmayer,Stelzer,Therhaag,von Toerne,Voss, arXiv: physics/0703039

or every ROOT distribution (development moved from SourceForge to ROOT git repository)
" WEKA:

" “R”: a huge data analysis library:

" “new Boosted Decision Tree library” Rie Johnson and Tong Zhang. Learning
nonlinear functions using regularized greedy forest, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(5):942-954, May 2014. : 1109.0887v7.pdf

" SciKit Learn Machine learning in Python

" Theano: Popular for implementing deep learning neural networks

® CAFFE, Torch, .... You name them


http://tmva.sf.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
http://arxiv/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/

SULNINEry = =
= MVA'’s are great
= MVA'’s are widely used in HEP
= MVA’s are even “widelier” used outside HEP
= MVA’s are complicated to understand and to code !

= MVA'’s and work thereon still is not ‘funded’ buy HEP like

“Detector/Accelerator development” for example is:

« note: before TMVA in ROQOT, the majority of the HEP community only used/knew
simple cuts which often perform much worse

« significant improvement in physics reach (imagine how much a 20% better
accelerator/detectors would cost?)

« provide state of the art analysis tools for state of the art
accelerator/detectors

- And | think we should have a much larger concentrated effort to put
HEP to ‘state of the art’ in pattern recognition, then this one paid TMVA

position | was unsuccessfully asking for!
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SUNIzry SN,

Linear classifiers : y(x) = ‘linear combination of observables “x"
—> decision boundary (y(x) = const) is a linear hyperplane

Non linear classifiers: y(x) = ‘non-linear combination of observables “x”’
—> decision boundary (y(x) = const) is ‘any kind of hypersurface’
—> parameterised e.g. “pieces of sigmoid functions’
- Neural Network
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SIERAVIHIBRESPEFNEG. ‘

Irrelavant Variaoles

m Toy example with 2 discriminating and 4 non-discriminating variables ?

Background rejection versus Signal efficiency TMVA
10 ]

0.8 T ' ' '
use only two discriminant

varlables in classmers

0.7

0.6

Background rejection

0.5

0.4

SR BH_'_?E!I_ _________ e e N\
08 g ey

0.2IIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIlIIII|IIII:
0 01 02 03 04 05 06 07 08 09 1

Signal efficiency
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SIERAVIHIBRESPEFNEG. \

Irrelavant Variaoles

m Toy example with 2 discriminating and 4 non-discriminating variables ?

Background rejection versus Signal efficiency TMVA

1

09—
0.8 :

u use all discriminant
0.7 :_ varlables in C|aSSIerI’S

0.6

Background rejection

0.5

0.4

_.iBDT.a%.S_%_ég
Q3_““;:::TﬁDEﬁ§ ....... _— — — o - -\

0.2

IIIIIIIIIIIIIIlIIIIillllIIIIIIIIIIIIIIIlIIII|III

0 01 02 03 04 05 06 07 08 0.9 1
Signal efficiency
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(followirne) ez lm,)le'!:a <er frorn =
V.Senrmelling)

A simple K-short selection:

" consider all opposite tracks with 450GeV < M_ .., 550GeV

" reconstruct secondary vertex for those tracks
> impact parameters d; (d+,d;-,d = dg)
—2 distance of closes approach between 2 tracks d;;

—2 distance : primary — secondary vertex d,

" require the secondary vertex to lie “downstream” Z,, -7, ,, >0
mvariant mass spectrum
> *“"“"\“"I““\"“\"“\"“\“““"“"* . . o
2 b o _: mmpact parammeters at
I Attt S sveons primary vertex — track
£ 12000 |- .
$000 i j d R B —
; ] B
oo | ] d2\
4000 B .
ot ; : + track
o ] dz distance of closest
Ll ‘ I ‘ I | I ‘ | I ‘ | ] ‘ I ‘ Lol ‘ I ‘ I

0 approach at secondary vertex
450 460 470 480 490 500 510 520 530 340 350 -

m(rr) [MeV]



(following exarnole taken firorm ==
- Vi.Schnrnellinc)
= criteria

O informative: good separation between signal and background
O well behaved: no “singularities” in the PDFs

=» avoid finetuning in placement of cuts
O independent: every variable contributes new information

% variables used in the following

A measure for impact parameter reduction

Quality of the secondary vertex
V) = loglo(dlg)

Lifetime of the particle (correlated with dy and d», hence taken 3rd)
v3 = logy(dz)
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(following exzarnole taken from  =-

) training sample testing swmp]
r‘-l -"I_IIII||||||||||||||||||||||||||||||||||||||||||||_ N J_||||||||||||||||| || ||||||||||||||||||
iF 3 1F
gs E E
JE rammereee e _: IF
0F L CiigagmgEiiiiaiiiiiiiic, - 0
L.1iIISEBREEIIIIIIIIZIIIIIIL . .
1E HF = e
o] noe oo ]
iE = =
i — 1F
| | | ||||||||| | | III: g |
j 4 3 ] 0 ] i 4 ] 4

vl

0 some number of sighal and background candidates in training
-» same statistical power to estimate PDFs

O imbalanced samples in testing
=» gauge performance under realistic conditions

Helge Voss INFN School of Statistics 2015



Kolmocgoroy Srnirnoy Tesit =

Tests If two sample distributions are compatible with coming
from the same parent distribution

—> Statistical test: if they are indeed random samples of the same parent
distribution, then the KS-test gives an uniformly distributed value
between O and 1 !

- Note: that means an average value of 0.5 !l

- How does that look like for TMVA, where many people use the KS test
to check for “overtraining”



Kolmogorov Sirnoyv Tesi 1

EnmgKsz IM‘ m.-‘.l;.(iswm
Default (ROOT) ] e
1800 160"
160 140~
1402— 1203—
1202— 1002—
o
50;_ 60
40; 40;
200 20;—
Setting Option “X” (d efault in % 04 02 03 04 05 06 0708081 ‘bﬂ' 0102 03 04 0508 07 08081
1 [_BKSX | [ Backgr option X _hKBX ]
TMVA since 4.2)
140 1207
120f 100l
- Uses random sample

80~

generated from the two
distributions that need to be
com pared AR R It S T Gs 0a 04 05 06 07 08 061

Distributions are not really “flat” - effect of using binned histograms (to be checked...)
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