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Interval estimation

e Confidence intervals are used to quantify the statistical accuracy
of a measurement. The simplest example is the standard error,
or standard deviation (square-root of the variance of an
estimator), which provides such an estimate for the Gaussian
case.

e More general: the goal of interval estimation is to estimate
intervals that contain the true value of a parameter with
given probability. The standard error for the Gaussian case will
turn out to give the interval for which this probability is 68.3 %.

e The meaning of probability, and the operational definition of how
the interval is estimated will differ between Bayesian and
Frequentist intervals. A special frequentist case are so called
Likelihood intervals.

e The choice of interval is not unique.



Interval estimation

— Bayesian intervals (“credibile (-ility) intervals”)

- Exact frequentist intervals (“confidence intervals”)

e Neyman construction (exact method) in particular: unified
approach

- Likelihood intervals

- CL,

- Nuisance parameters and their treatment including
real life examples

— Inference with high dimensional complicated
likelihood functions.

- Summary



Interval estimation

CREDIBILE INTERVALS



Bayesian interval estimation

« The Bayesian interval can be constructed from the posterior
distribution

P(X |8)P(6)
j P(X |8)P(0)do

p(f] X) =

« The interval which contains the true value with a certain degree
of belief is then given by an integration of the posterior

distribution. UL

l-a = p(@| X)do

QLL

1- o IS chosen to be 0.683 (15) or 0.9 or 0.95. The corresponding
Interval is called credible interval (cf: frequentist: confidence
Interval).



Credible intervals -uniqueness

e The condition that the credible interval should
have probability 1-a is not sufficient to make it
unique.

e Other conditions can be imposed:

— Accept points of highest posterior density

— Central Interval:

1 o0 d HLL d
—a=|, pO1X)do=]  p@|X)do

- One sided interval (upper or lower limit)

o0

a=[ p@|x)de

12-03-07 gVt
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Upper limit (U.L) in words

An upper limit is of particular interest In

particle physics, as it Is often the result of

searches for unknown physics in case of
no detection

Bayesian: the degree of belief that the
signal i1s larger than the U.L. Is small.

Frequentist: If the signal is larger than
U.L., the probability for the experimental
outcome Is small.
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Upper limit and detection limit

In particular an upper limit should not
be confused with the minimal detectable
signal.

Minimal detectable signal: signal that on
average yields a result that is unlikely
under the background only hypothesis.



Posterior for Poisson process with uniform
prior

01 2 34567 89 10
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A nice property of Bayesian intervals

Bloom: "We are restricting the parameter to be
larger than 0, aren’t we biasing the result, Jeff?”

Scargle: "Is the parameter supposed to be larger
than 0?”

Bloom: "Yes, it is a cross-section”

Scargle:"Then it should be biased in this
direction”.
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Credible upper limits- Poisson distribution with
known background (90 % confidence level).

b=0.0 2.3 3.89 5.32 6.68
b=0.5 2.3 3.50 4.83 6.17
b=1.0 2.3 3.26 4.44 5.71
b=2.0 2.3 3.00 3.87 4.92
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Some words on Jeffrey’s prior.

o Jeffrey’s prior is defined as the sqgrt of the
determinant of the Fisher Information

o Jeffrey’s prior for Poisson => (1/sqrt(s))
minimizes the Fisher information in the prior and
is scale invariant and a proper prior =2 gives
unreasonable upper limits, unfortunately.
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Interval estimation

EXACT FREQUENTIST
INTERVALS



Frequentist intervals

e As we know the PDF for given parameter, a method to calculate
confidence intervals can be reformulated as a method that finds
the function Z = f(06,d) such that the PDF in Z becomes
independent of the parameter 0.

e Example: Normal theory: Z = (X-u)/o. Confidence intervals can
then be readily obtained from evaluating (or tabulating) the error
function.

— This is all I am going to say about Normal theory, if you want
more go to the excellent books by Glen Cowan or Fred James.

e In the general case > Neyman Construction



Jerzy Neyman (1894-1981)

e born in Russia to polish
parents

e Studied in Charkiv
(Ukraine) and Warsaw,
later also active in
Berkeley.

e "Such confidence sets are easily
obtained under the Bayesian
assumption that the parameter is
itself random with a known probability
distribution, but Neyman’s aim was to
dispense with such an assumption,
which he considered arbitrary and
unwarranted.”




Frequentist intervals

e Find the interval [6, 8Y] in 8 - space, such that:
l—a = p(d | QII < Htrue < eul)

e The property needs to be fulfilled independent of the true
value.

e The interval is called the confidence interval. The
property described by above equation is called coverage:

In a very large number of experiments, each
providing a confidence interval [0, 6], the fraction
of intervals that contain the true value is 1- a,
independent of what the true value is.

[6,6"]



Exact frequentist intervals- The Neyman
construction

Confidéiiess intervals

S P(n|s)
s [---------__ Belgovering the true
_true : sin 1 -o

S] fF------- - / - [ss] = Conifidence

S :

s3] - nterval

2 -
%
. -
n

"Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability".
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences 236 (767): 333-380.



Upper limits and Central
intervals

As mentioned earlier, the requirement on the

confidence belt to contain a fraction 1-& or
experimental outcomes does not define it uniquely.

There is complete freedom to choose the
observational outcomes (you can come up with
some yourself!)

1 ®© ny
Central interval: Ea:jnu. p(n|9)dﬂ=Lo p(n|&)dn

Upper limit: & = J:: p(n ‘ H)dn



Central intervals and upper limits.

mearn ji

0.9-upper-limit

[ | | | | | | | |
-2 -1 0 I 2 3 1 o fi

measured mean T



Flip-flopping

mean ji

I I I I I I I I
-2 -1 0 1 2 3 - o 6

measured mean T

Flip-flopping for a Gaussian measurement. The shaded area represents the
effective confidence belt resulting from choosing to report an upper limit
only when the measurement is less than 30 above zero. This effective belt
undercovers for 1.2 < pu < 4.3, for example at g = 2.5 where the intervals
AC and Boc each contain 90% probability but BC contains only 85%.



Unified confidence intervals.

e A more clever way to choose which observations to
include in the confidence interval by is computing the
likelihood ratio and rank the observations accordingly

_ L(X186,)
 P(X [ hee)

e For given observation x and parameter 0, include
first the one with highest R, then next- to highest R

until you reach 1-a

e This is known as the "Feldman&Cousins Confidence
Interval”

G. Feldman + R. Cousins, Phys.Rev. D. 57, 1998



Illustration: Poisson case confidence belt

1 P(n|u) Hbest P(n|ppest) R rank U.L. central
0 0.030 0. 0.050 0.607 G

1 0.106 () 0.149 0.708 3 v vi
2 0.185 0 0.224 0.826 3 v v
3 0.216 0. 0.224 0.963 2 v vi
4 0.189 1. 0.195 0.966 1 v v
5 (.132 2. 0.175 0.753 4 v v
G 0.077 3. 0.161 0.480 T N v
7 0.039 4, 0.149 0.259 v vi
8 0.017 5. 0.140 0.121 v

0 0.007 6. 0.132 0.050 v

10 0.002 T. 0.125 0.018 v

11 0.001 8. 0.119 0.006 v

Taken from original FC paper

e Can you guess what yu and b are ?
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Comparison, U.L. m unified intervals.

b=0.0
b=1.0
b=3.0
b=0.0
b=1.0

b=3.0

12-03-07

2.30
1.30
-0.70

2.44
1.61
1.08

3.89
2.89
0.89

4.36
3.36
1.88

Jan Conrad, FK8006, Interval estimation

6.68
5.58
3.68

7.42
6.42
4.42

Upper
limits

Unified
intervals



Confidence intervals for discrete data

e Confidence intervals can exactly acquire

probability 1 - o only if the observable is
continous.

e If the data is discrete (as is the case in the
Poission distribution),we need to replace the
integral with a sum and the requirement will also
have to be altered as:

1—a:X_“p(x P)dX >1—a > iP(Ms)

Xy I=ny

The coverage will be exactly fulfilled only for certain
values of the nuisance parameter.
12-03-07



Upper Limits
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Coverage with Flip-flopping

Coverage for a=0.1 with Flip-Flopping at 4-sigma

|

i
0.98
0.96
0.94
0.92

0.9
0.88
0.86

0.84
0.82

IIIIIlI|IIIIlllllllllll[lllllll|ll|]lll

lllllllllllllllllllllllllllllllllllllll
0'80 1 2 3 4 5 6 7 ¢ 8

True value of u (in ¢ units)

T. Dorigo?

Two-sided
Intervals when
measurement
> 46 away
from zero
(Gaussian
process).



Feldman-Cousins
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Interval estimation

LIKELIHOOD INTERVALS
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Likelihood intervals

e Normal theory: pdf can be converted into a
likelihood function (L) by exchanging X and .
Then: InL becomes a parabola:

In L




Why is this useful?

e If Normal theory is applicable, log-likelihood is
parabolic

o If likelihood is parabolic, normal theory is
applicable

e Assume: the likelihood is non-parabolic, but it
can be transformed into a parabolic one (by a
transformation of the parameter)

e But the likelihood values are invariant under this
transformation, thus even in this case:

InL=InL_,_ —-1/2

.. for 10 intervals...
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Non- parabolic likelihood

e (P B N
TR "‘-1_’.
SRV ~oir i3

InL

F. James, Statistical Methods
in Experimental Physics.



Other confidence levels and least-square fits.

2
|nL~—%—>;52=;(§ﬂn+l

Confidence level (probability contents desired inside

Number of hypercontour of x* — x2. + UP)
Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 3.84 6.63
2 1.39 241 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71
IfFCH is — log(likelihood) instead of x*, all values of UP

should be divided by 2.

Table 7.1: Table of UP for multi-parameter confidence regions



Likelihood intervals — Poisson with known
background (90%/95% confidence level.)

b=0.0
b=1.0
b=3.0
b=0.0
b=1.0
b=3.0

1.36
0.36
-1.64

1.98
0.99
0.64

3.65
2.65
0.65

3.65
2.65
0.65

6.82
5.81
3.82

6.81
5.81
3.81

Rolke, Lopez,Conrad, Nucl.Instrum.Meth. A551 (2005) 493-503

likelihood

Rolke



Neyman construction provide coverage,
what about likelihood intervals?

Yes, asymptotically, but not necessarily for
small samples.
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Coverage of likelihood intervals
(Poisson 90% two sided)

0.98

e
o
=}

14
o
S

o - R R R R A L L R

Interval Coverage

e
o0
oo

0.84

Signal



Coverage in practice

WEIGHTED AVERAGE
0.006 = 0.018 (Error scaled by 1.3)

2

.

A I - SMITH 75B WIRE
| \—I— - " NIEBERGALL 74 ASPK
HT - - FACKLER 73 OSPK
— - - HART 73 OSPK
— | - MALLARY 73 OSPK
—— " BURGUN 72 HBC
—— -~ GRAHAM 72 OSPK
[ = MANN 72 HBC
|' |\ ——+—  WEBBER 71 HBC
e e - CHO 70 DBC
| =+ -'.I - - BENNETT 69 CNTR
| i LITTENBERG 69 OSPK
[ — - JAMES 68 HBC
." ] . FELDMAN 67B OSPK
— - AUBERT 65 HLBC
L - BALDO-._. 65 HLBC
— - FRANZINI 65 HBC

-0.4
12-03-07
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03
1.3
0.1
0.3
4.4
0.2
0.4
3.3
74
1.6
1.1
03
0.9
0.3
0.1

0.2

22.0

(Confidence Level = 0.107)

12/17 = 0.705



Interval estimation

CL; - MODIFIED
FREQUENTIST



CL. -- motivation

The CLs method is introduced to avoid the case where a generic
method (say Feldman&Cousins or likelihood) would command
exclusion of signal hypotheses to which the experiment has no or
little sensitivity.

This would happen if you observe a downward fluctuation of your
expected background, which might be more likely to point towards
a problem in your background modelling.

And a purely frequentist method you can produce better limits by
adding background regions.....

Can we come up with a upper limit that will allow robust
statements about the signal parameter even in this case?

A L Read 2002 J. Phys. G: Nucl. Part. Phys. 28 2693



and PMTs, beam-stop neutrinos

KA R M E N a n O m a | y Liquid scintillation calorimeter

L~ 20 m
Ve + B - uNg.n. 4+ |e”
1
Neutrino experiment which 2Cer. + lef[+ v

>

V4

- sees no events
- expects b =2.9
- FC gives upper limit of 1.1

M;ﬁ

AR
i ) > "

o

Z
L

)
<

Q ) 7

o
j},

Ak
A

i
i

If experiment o ?3%:3

2 A,

> sees no events
> expects b =0 iy |
- FC gives upper limit of 2.4 s

urich Univ. 30. Nov. 2005
an Conrad (CERN)

Claimed to refute LSND oscillation signal



Slide from seminar talk 2005...

Solutions to the KARMEN anomaly:
none generally accepted !

. Roe-Woodroofe
sMNeyman Construction, FC

B. Roe & M. Woodroofe, Phys.Rev.D60:053009,199

ordering with renormalization _ .
(conditioning) B=20 B =4 I
s Under- 2.4 2.4 |
if n=n. covers
S ) “
LT G R S. Ciampolillo, Nuovo Cim.A111:1415-1430, 1998
T L M. Mandelkern &. J. Schultz J.Math.Phys.41:5701-
S ', 5709,2000
B=0 B =30
+  Ciampolillo,Mandelkern & Schultz Over-covers, I I
« based on MLE, seriously I 2.0 4.7 I

including constraint (biased)

G. Punzi, Proceedings , Durham 2002
=  Strong confidence intervals

* consider only subset of 90 % I B=0 B=4
intervals of observational space
sCL |25 2.3

S Generally recommended: present “sensitivity”
furich Univ, 30. Nov. 2005 .. .. :
an Conrad (CERN) (mean limit one would obtain in case of no signal 27

S S T T T o™




Now there is: CL, ¢
CLs+b — s+b(q2qobs)

CLb =1- pb — I:)b (q 2 qobs)

CLs+b
CL,

Modified p-value:

l ps+b
Ps =
1-p,

CL, =

Figures taken from ATLAS note for conference speakers, Glenn



Untervals CLs (Poisson with known
background 90% conf.

b=0.0
b=1.0
b=3.0

b=0.0
b=1.0

b=3.0

2.3
2.3
2.3

2.3
1.3

-0.69

3.89
3.27
2.84

3.89
2.89
0.89

level.)

6.68
5.71
4.36

6.68
5.68
3.68

CLs

Neyman
U.L.



Remarks on CL,

There is a prize to pay = over-coverage

coverage probability

Taken from G.

0.9 1 Cowans note on
—CL, CLs
.......... CL,,,
0.8 .
0 1 2 3 4 5




Conditioning on the background:

Roe&Woodroofe

Phys.Rev. D60 (1999) 053009

e Unified ordering with background conditioning
(conditional probability to see n events given at
most n_0 background events)

Qerp(n) = 4

&

1
0.975
0.95
0.925

(1-01) of¢

3(n) : ;
"T 2+b if n <n,

no uncertainties

uncertainty = 0.4
Gaussian

2 4

o

6

true signal expectation

JC+, Pre-Phyststat conference arxiv:0206034, Durham 2002



More remarks on CL,

e CL. applicable with any test statistic

e Same limits from Bayesian for Poisson and Gauss estimates
of mean for uniform prior.

e CL. is by now standard in ATLAS, it seems .... it is also
used - guilt by association — in astroparticle physics
(Xenon/LUX(?)).

e Feldman & Cousins also realized the problem of exclusion
beyond sensitivity.

e They proposed to always present the actual upper limit
together with the sensitivity (mean upper limit in case of
background only).

e The solution of FC seems more purist in the frequentist
sense.



Summary

e Parameter intervals are used to quantify the
statistical accuracy of a measurement. The
simplest example is the standard error, which is
the standard deviation (square-root of the
variance of an estimate),

e More general, the goal of interval estimation is
to estimate intervals that contain the true
value of a parameter with given probability.
The standard error for the Gaussian case will turn
out to give the interval for which this probability
is 68.3 %. This will usually be a two sided
interval, which we choose to report for a point
measurement.

12-03-07 Jan Conrad, FK8006, Interval estimation



Summary

e Upper limits are a special case of confidence
intervals.

Bayesian: the degree of belief that the
signal i1s larger than the U.L. Is small.

Frequentist: If the signal Is larger than
U.L., the probability for the experimental
outcome Is small.
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Summary

e Four methods have been discussed so far:

— Credible intervals (Bayesian)

— Exact freguentist intervals (Neyman construction)
- Likelihood intervals

- CL¢
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Interval estimates

NUISANCE PARAMETERS
AND THEIR TREATMENT



Nuisance parameters

e Nuisance parameters are parameters in the problem
which affect the result but which are not of prime
Interest.

e Two examples:

— Measure the x-sec for dark matter annihilation
and estimate an interval on it. Mass of dark
matter particle is then a nuisance parameter.

— Measure the rate of a process and estimate an
interval on it. Background expectation is a
nuisance parameter.
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Nuisance parameter and systematic
uncertainties

e Example 1: both parameters are of interest, a
confidence interval (ellipse) in both parameters
would be relevant.

e Example 2: background is an experimental
uncertainty. A confidence interval in both the
signal strength and background strength is not
very interesting

—>want to report confidence interval only in
signal strength, however, taking into account
the uncertainty in background - “project” on

parameter of interest > how?
12-03-07 Jan Conrad, FK8006, Interval estimation



Nuisance parameters and systematic
uncertainties

e Systematic uncertainties: uncertainties that do
not become smaller with increasing size of data
sample.

e I will be using the more general definition:
uncertainties in parameters that are determined
in ancillary experiments.



There are two general methods

Profile likelihood (frequentist):

InL(O) > A(6,) =max,, ., InL(0)

WED

Marginalisation (Bayesian)
L(0) - Lyt () = | A6, . L(6, 1.0

VRN

Frequentist treatment: Calculate posterior
1203%Ybrid (freq./bayesian) from it: Bayesian



Let us consider a concrete example.

e Search for excess over background.

e Background determined by side-
band/control region measurements.




Let us write down the likelihood

e Sideband measurement of background:

(J“l T bjx E—[;H—b] ‘ (Tbjyg—’rb

! y!

flz,ylp,b) =

e And another common case, normal uncertainties
on background and detector efficiency.

X ~ Pois(eu + b), Y ~ N(b, o), 4~ Nie,o.)



Credible Intervals —marginalisation

e In the Bayesian approach you can find the posterior for the
nuisance parameter and integrate over them, eg. with
Gaussian uncertainties on efficiency and background this could

look like:
1- O[(Sl, SZ) oC ”] I:)(‘S‘trues T b | n)G(gtrue | gmeas)G(b | bmeas)dgtruedbdS

e j.e. a Poisson convolved with two Gaussians.

10 A10°

Events

- _ 100:— de/e= 50%
o stb=15 : db/b= 50%

40—

20

L . 1 ‘ 1 1 L L L L 1 il Il ! Il L L L L | |

CU 10 20 30 40 50 0 1 L 1 1 1 L 1 1 1 L 1 1 1 1 - " il il
random # 0 10 20 30 40 50

12-U3-U/( Jan conraa, FK800€¢,  ~ random #




Coverage of Bayesian intervals

e A general approach for physicists (and also for
statisticians) is to use Bayesian methods and to
study their frequentist properties.

—->Bayesian method acceptable if reasonable
frequentist properties

—->Frequentist properties maybe a good
diagnostic for problems in the Bayesian
approach.

- Let us give an example .....



Generically overcovering

e Poisson process with uncertainty in background
and efficiency

I.UUE:&?\__ lnDﬁ:Og

& 10 % uncertainty in & ¢ 20 % uncertainty in €

0 uncertainty in b © 15 9% uncertainty in b

0.9 0.90

§
Strue true

J. Heinrich, PHYSSTAT 2005



Combining several measurments

1.00P=27
C 3 independent measurements
34 % uncertainty in £ (per channel)
25 % uncertainty in b (per channel)
D.E-"DD - 5o
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12-03-07

1.[}0-@43
C
4 independent measurements
49 % uncertainty in € (per channel)
29 % uncertainty in b (per channel)
D.QGU 20

Strue

.
I

Jan Conrad, FK8006, Interval estimation



Can be fixed with choice of prior.

« In hindisight, trivial:
+ A flat prior for each of 1.00
M channels leads to a

« gM1 prior for total (O
acceptance

e So: different prior: in this
case simple

* 1/ in each channel

4 independent measurements

49 % uncertainty in £ (per
channel)

29 % uncertainty in b (per
channel)

e
-

.

Using 1/ and 1/b

0.90
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Profile likelihood

See Cowan et al for an extensive discussion of asymptotic properties and

useful modifications

e A very convenient way to reduce the

dimensionality to the parameter of interest is the
profile likelihood, i.e. for given parameter of
interest x, the |Ike|lh00d IS maximized with
respect to ‘all other parameters:

A(6,) = MaX, i« In L(6’)

e Interval inference is then performed on A (i.e.:
for 10 uncertainties:

2(6.) = A(6,)-1/2

12-03-07 Jan Conrad, FK8006, Interval estimation



Example: background nuisance

parameter
faylub) = EED vy (O oy
! y!
E{#}:x+y—{1+r]#+ﬁx+y—[1+r}#}9+4{1+r)yﬁ

2(1471)

L(p, b))
L(@.blz.y)

M|z, y) =

Rolke, Lopez,Conrad, Nucl.Instrum.Meth. A551 (2005) 493-503
12-03-07 Jan Conrad, FK8006, Interval estimation



Example 2: uncertainty in detection efficiency

X ~ Pois(ep + b), Y ~ N(b,op), Z ~ Nleo.)

P L T (y—h] -
E][}g“;_t,h,ﬂfsyez]_E.H_l_h_l_l_ ag =0
s, I (2 —e) .
Elﬂgg{ﬁhbsellf Y. 2) = e+ b B T e =Y
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Profile Likelihood

Signal Rate

Figure 1: Example of the —2log A curve. This is the case = 8, y = 15 and 7 = 5.0. We find

the 95% confidence interval to be (0.28, 12.02).
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Likelihood intervals: coverage,
background as nuisance parameter

b=4

1.00

MLE setto O
- 1f <0

0.96

Coverage

0.92

Lower limit
setto O If 2
MLE<O. -
0 2 4 6 8 10
Signal Rate

Gaussians with o, = 0.5, e = 0.85 and o, = 0.075.



TRolke

class TRolke: public TObject

TRolke

This class computes confidence intervals for the rate of a Poisson

process in the presence of uncertain background and/or efficiency.

The treatment and the resulting limits are fully fregquentist. The

limit calculations make use of the profile likelihood method.

Author: Jan Conrad (CEERN) 2004

Updated: Jchan Lundberg (CEEN) 20082

Copyright CERN 2004, 2009 Jan.Conradfcern.ch,

Johan.Lundberg@cern.ch

For a full 1ist of methods and their syntax, and build instructions,

consult the header file TRolke.h.

Examples/tutorials are found in the separate file Rolke.C

o Useful if you have Poisson process with
uncertainties on efficiency or background
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Historical slide: profile likelihood for marked
Poisson

Higgs search

Not straw-man, but still TOY (e.q. ggH=> gqrT =2 gall(missEt):

Nobs sf.(zl { (e b
E(ﬂa, ng, .’E‘H, b) = P(nfs 4 b)P(T.’:b‘Tf}) H c}f- (I IS‘) + ).ff (’Il )

=1

s+ b

1 . 1 ,
folals) = £e™@Y fy(alb) = e

pminal cov = Se

b T a O calc Pow

20 1 -3 5.2 -

20 1 -1 5.1 -

50 1 -3 5.1 0.9997 o i oz e ha T hs oe ey e he

Discriminant

VERY PRELIMINARY

urich Univ. 30. Nov. 2005 K. S. Cranmer, J. C. in preparation




Example from my own research.

Large Area Telescope (LAT):
20 MeV - >300 GeV

GLAST Burst Monitor (GBM):
8 keV - 40 MeV
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Indirect detection of dark matter

Vi
X + ~N /
WH*/Z /g Qﬂ:
N
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Data Set & Technique

FOURTH GENERATION

I00I.4531

1108.3546

1310.0828

{x] The Astrophysical Journal, Volume 712, Issue 1, pp. 147-158 (2010)

{2} Physical Review Letters, vol. 107, Issue 24, id. 241302

[31 Phys.Rew. D89 (2014) 4, 042001

EF FE CTIVE LI KELI H 0 O D / (term accounts for uncertainty m_T’factorJ
Lo(D|p, 0s) = Ly*T (D, 64) X L ¢~ (logio(Je)—logi0(J+))*/20¢

In(10)J¢v/ 270y
3 (Dl /_L . {Ht } ) — H LQ (D | /,L 5 Ht ) €«— *(combine information from all targets)

targets

D l I_,L {Ot} H L3 D |u {Ot } 4— (combine information from all psf classes)

classes
Brandon Anderson, Stockholm University | 5th Fermi Symposium *see talk from Alex on chnesday’ also postcr 2.0 7

Slide from Brandon Anderson (Stockholm)



Effect on likelihood

14 :

1.2} e

1.0 I

o
(o2}
T
.

‘ 100 GeV bb channel
J( x10'), log10(a ;) = 0.063, 0.1 (Carina)
0.580, 0.4 (Ursa Major II) |

AlLogLike

o
[¢)]
T
.
.

n

U] -

I - -+ Carina without J-factor uncertainty
' . Ursa Major Il without J-factor uncertainty

02 ) - -+ Combined without J-factor uncertainty

" A — Carina with J-factor uncertainty

. — Ursa Major Il with J-factor uncertainty

y — Combined with J-factor uncertainty
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Exciting results.

Fermi-LAT Pass 8 Dwarfs Composite 95% C.L. Upper Limit

10-21

10-22

10-23

10-24

-=- Median Expected
I 68% Containment
95% Containment

Preliminary

10'25
10-26
1077 E
bb
10~28 1 1 1
10° 10! 10° 10° 10¢
Mass (GeV)

(bands derived from
300 random blank-
sky sets)
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= Fermi-LAT Pass 8
== Ackermann+ 2012 MW Halo (3 o)
— Ackermann+ 2014 Dwarfs (95% C.L.]
— Calore+ 2014 (2 o)
— Daylan+ 2014 (2 o)
—— Abazajian+ 2014 (1 o)
1073 | Gordon & Macias 2013 {2 «)

Dwarfs {95% C.L.)

Thermal Relic Cross Section
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Typical LHC profile likelihood (H->vyy )

N
Le(p,0c) =™ | | Lon(myy(n);u,0c)

‘Cc,n(m'r’y (n); "Li BC) — NS,C("LE egﬂrm)ﬁ,t:(m’}"}"; ezhﬂ‘pﬁ)
Mass distribution =+ Nokg,c fokg.c(Mqyqy; 0259

Noc (1,00°7™) = p[N9HSM(9995) 4 NYEFSM (67 5F)
_i_NWH,SJH(BWH) _i_NZH,SJH(BZH) _I_NttH,SJW(BtEH)]
' KBR [:HBR) Kiumt' [Hfumi) Keff (Heff) Kisai(gism)
Kpﬂﬂ—up (Hpﬂe—up)KESmie(HESCQIE)

Kpﬂﬂ—up,ﬂ(Hpiie—up,c)Kmat,c(Hmat)
+ T spurious,c Hspuriﬂuﬂ,c . Slg nal [812)

normalization



The test statistics of GCVG for intervals.

Cowan Cranmer, Gross, Vitells Eur.Phys.J. C73 (2013) 2501
e Provides common framework for upper limits and
discovery, provides asymptotic properties.

e Profile likelihood ratio

. —2InAp) pg<p. upper limit

i — -

| 0 =g,
, b e Profile likelihood
—2In Lef) g e -

fu. = —Ellli“i} — 4 ' ‘r-'[':]-'f.j[':]}-j e ratIO’TS b.ecomes.
ol Hedw) 45 constant if negative
k L(.6) - MLE, two-sided.
() d<p eniesw o0 e Profile likelihood ratio
@uz{ﬂ iep T ) 2 gcicy upper limit, provides
0 > po some CLs type

protection



Neyman construction and nuisance
parameters.

e There is no standard solution to the task of

including nuisance parameters into the Neyman
construction

e One way to deal with nuisance parameters is to
use a modified PDF, e.g in presence of a
Gaussian background uncertainty:

P(nls) = [P(ns,b)G(b]b,,)db

e Then the construction proceeds as usual

see JC Phys.Rev. D67 (2003) 012002, Cousins& Highland (1992)
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Example intervals for Feldman Cousins
ordering and nusiance parameters.

ng|b|background |Likelihood ratio|Likelihood ratio
uncertainty |interval interval with conditioning
2 1210 0: 3.90 0: 4.00 c 167
E =
0.2 0: 3.95 0: 4.10 s - o _
15 - —— Likelihood ratio
0.3 0: 3.05 0: 4.25 [ -—-- Likelihood ratio with conditioning
14 -
0.4 0: 3.95 0: 4.35
13 -
12 |
1L
o E
_|||||||||||||||||||||||||||||||||||||||

0 005 01 045 02 025 03 035 04
signal efficiency uncertainty

JC + Phys.Rev. D67 (2003) 012002



What would it do to an upper limit on

dark matter - indirect detection with

neutrinos

- 1['3: T T T T T T @ 1['2
13 8 AMANDA-E10 E
130 d livetime QT
g Ey, =1 GeV ﬁ
S 05 L &
E10 b
L
=1
104} =
Ng 8 - 1k
ST
A
|||||:2 Lol Lo 10

40% in signal efficiency

30% in signal efficiency

20% in signal efficiency

10% in signal efficiency

20% in background efficiency
Mo systematics

10 10°
Neutralino Mass (GeV)

JC + Phys.Rev. D67 (2003) 012002

10° 10°
Neutralino Mass [GeV)



pole++
https://code.google.com/p/polepp/

« Extension of FORTRAN program pole which includes Bayesian
treatment in FC ordering Neyman construction
» ftreats P(n|ss +b)

« Consists of C++ classes:
« Pole calculate likits
« Coverage coverage studies
« Combine combine experiments

« Nuisance parameters

« supports flat, log-normal and Gaussian uncertainties in
efficiency and background




Neyman construction provides coverage,
any modifaction needs to provide the same

property.

Would the new intervals still exhibit
coverage?
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Feldman Cousins with Bayesian
treatment of background uncertainties.

—e— e=1.0, b=N(2.0,0.1)

&=1.0, b»N(2.0,0.8)

1

T

1

T

o e
-

1'(1'“
[~
4
Fow = R I I B B

10

o
"N
Gl s
o
@

Tegenfeldt+]C, Nucl.Instrum.Meth. A539 (2005) 407-413
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Feldman Cousins Profile Likelihood Ratio

e Remember likelihood ratio:

_L(X]6,)
P(X | Oy)

e Knowing about the profile likelihood an obvious
ansatz is:

R— L(X |Ho’77best|¢90)
P(X |9best’77best)
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Example (taken from G. Feldman talk)

Let x be a Poisson measurement of p+ B and

b be a Poisson measurement of B/r in an ancillary
experument (1.e., 7 = signal region/control region),

r/n, rb 0.3 3.3 6,3 9 3
0.0 |0.00- 1.08|0.00- 4420.15- 847 |1.88-12.30
0.5 0.00- 1.1110.00- 442 10.00- 547 11.75-12.30
1.0 0.00- 149 1000- 473 (0.00- 5.70(1.32-12.55
30 |0.00- 1.57]|0.00- 4385|0.00- 9.36(0.00-13.03
12-03-07
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Unified approach and nuisance parameters

e I am not aware of any practial application of this
method.

e ] assume that the method is largely superseeded
by the profile likelihood (Rolke+, Cowan+)

e Should be useful for example in low statistics
experiments (e.g. double beta decay)
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Nuisance parameters and pseudoexperiments

e Assume Poisson distribution with parameter s
and expected background b. You choose to treat
the nuisance parameter b in Bayesian way:

)db

P(n|s)= [ P(n|s,b)G(b|b,

e To test this with pseudoexperiments you have to
fix s and b and draw n and b_., i. e. in your
analysis the Gaussian will be centered on a
different value for each pseudoexperiment.

e Always keep track of what is measured and what

Is true.
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Confidence intervals

COMPLICATED
LIKELIHOOD SPACES
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Inference on beyond the standard model
physics

Scoff et al. 2009

. 1
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So ... what is the big deal? e

GRS
Stockholms
universitet

e High dimensional parameter space (~200
parameters easily conceivable)

e Parameters are not coupled to observables
in a linear way (RGE,astrophysical
uncertainties), requires numerical
calcuations

e Multi-modal likelihood space

e Non-trivial experimental likelihoods

Most likely we are facing a formidable task in

parameter estimation in the near future.

09-08-07 Jan Conrad, Oskar Klein Centre, Stockholms Universitet 9 1




Parameters of the theory 5

@ “‘f/\o

7+ s
Stockholms
universitet

e Example: Constrained MSSM

Unification at GUT scale, gravity mediated SU-symmetry breaking and
electroweak symmetry breaking

Gaugino masses: m;;,  (btw: m;;, ~2m, )

Scalar masses: m,

Trilinear couplings: A, 5 free parameters
Higgs vacuum expectation ratio: tan 8

Higgs mixing parameter: p?

e MSSM-7, MSSM-13, pMSSM (29 parameters) ...

09-08-07
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Challenges even in simplest Supersymmetric (4
parameters. CMSSM) theory
e Prior dependence

— Flat vs. Log priors give signifcantly different results.

— Remedied when including more data (LHC for CMSSM, but
what happens if we have to go to 100 parameters?)

93



Challenges even in simplest Supersymmetric (4
parameters. CMSSM) theory

e Frequentist properties

Both over and undercoverage Bridges+, JHEP 1103(2011) 012, LHC
Akrami+, JCAP 1107 (2011) 002

— Bad sampling of the likelihood, boundaries on the parameters,
flat prior in many dimensions (my guess) ....

Bridges et al (2010)

Equal-tail intervals

—_—
—_—

Benchmark 1 Benchmark 2

Coverage
o O
Q0 O —

©
N
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Challenges even in simplest Supersymmetric (4
parameters. CMSSM) theory

e Sensitivity to fine-tuning (especially for profile likelihood)

— PL picks “false” or “true” likelihood peaks

— PL much more sensitive to adequate sampling of the likelihood
— Can machine learning help ?7?
— likelihood free inference.

e.g. Feroz+, JHEP 1106:042,2011
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Volume effects (flat priors in many dimensions)

e Example: effective field theory approach to
direct detection of dark matter ( 11 couplings,
6 nuisance parameters), flat priors.

2D marginal pdf (all couplings) 2D profile likelihood (all couplings)

99% CR v 85% CL

S
E’P
-3
-4
-5
1 2 3 4 1 2 3 4
log ] D{mIfGeV]I log . ﬂ{mxfﬁe\.l’}
| : F—
’ o o 0.6 0.8 1
pmarg (Hl- 2 |d) oC /me cdby, P(@|d) - Catena and Gondolo, JCAP 1409

(2014) 09, 045



Summary

e Parameter intervals are used to quantify the
statistical accuracy of a measurement. The
simplest example is the standard error, which is
the standard deviation (square-root of the
variance of an estimate),

e More general, the goal of interval estimation is
to estimate intervals that contain the true
value of a parameter with given probability.
The standard error for the Gaussian case will turn
out to give the interval for which this probability
is 68.3 %. This will usually be a two sided
interval, which we choose to report for a point
measurement.

12-03-07 Jan Conrad, FK8006, Interval estimation



Summary

e Upper limits are a special case of confidence
intervals.

Bayesian: the degree of belief that the
signal i1s larger than the U.L. Is small.

Frequentist: If the signal Is larger than
U.L., the probability for the experimental
outcome Is small.

12-03-07 Jan Conrad, FK8006, Interval estimation



Credible intervals.

Credible intervals: intervals are obtained by integration of the
posterior distribution.

P(X|0)P(9)

0] X)=
PELX) [ Px10)P@©)do

Non-unique: additional condition: Upper limits, central limits or
Highest Posterior Density

Most useful if scientist wants to avoid unintuitive results

In many dimensions: beware volume effects
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Frequentist intervals
e Frequentist intervals, coverage:

In a very large number of experiments, each providing a
confidence interval [0, 6''], the fraction of intervals that
contain the true value is 1- a, independent of what the
true value is.

[ eII,, e”’]/

e As we know the PDF for given parameter, a method to calculate
confidence intervals can be reformulated as a method that finds
the function Z = f(6,d) such that the PDF in Z becomes
independent of the parameter 6.

e Example: Normal theory: Z = (X-p)/o. Confidence intervals can
then be readily obtained from evaluating (or tabulating) the error

function.
12-03-07 Jan Conrad, FK8006, Interval estimation



Frequentist intervals.

e Otherwise: Neyman Construction.

e Flip-flopping: observer decides after the
observation which confidence interval to report =2
effectively destroying coverage.

e Unified confidence intervals based on the
likelihood ratio (Feldman & Cousins 1998). No
choice necessary, will provide upper limits or
"measurements” depending on the outcome with
coverage correct by construction.
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Likelihood intervals.

e 68% confidence intervals:
InL=InL__ —1/2
e Steps can be chosen for required confidence level

e Works for non-Gaussian likelihoods (as long as
transformable into a Gaussian)

e (Good coverage properties even for relatively
small statistics.
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CL,

e Modified frequentist method to obtain upper
limits.

e CL. has been developed to avoid rejection of a
signal hypothesis (too good upper limit) caused
by a chance fluctuation of the background
hypothesis.

e Re-defined p-value for confidence interval:

J ps+b
P =
1-p,

e causes over-coverage in general.




Nuisance parameters:

e Nuisance parameters: parameters that affect the
result but are not of prime interest:

e Generically two ways to “project” on to the
subspace of parameters of interest:

/1(‘9k) =MaX, ;.. In L(é) Frequentist

L(0) > Lyt (6,) = [d6, ., L(6; ..) Bayesian
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Nuisance parameters

e Profile likelihood is the method adopted by LHC,
aid out and unified in Cowan+, and now
predominantly used in particle and astroparticle
physics

e has in general excellent coverage properties (see
e.g. Rolke+)
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Marginalization

e Used both in posterior inference (fully Bayesian)
e Hybrid Bayesian (Highland&Cousins, Conrad+)
e In hybrid bayesian - over-coverage in general

e In fully Bayesian - don’t care (except for
diagnostics potentially).
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Complex likelihoods (e.g. Supersymmetry)

e Bayesian methods have been used as MCMC
provides sampling of posterior

e Generically, strong prior dependence, bad
coverage properties - potentially overcome by
better data, but not clear to my mind.
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What method to use?

e Most commonly, you will use the maxmimum likelihood estimator
in your problem. The simplest (and has been shown recently, also
very well performing) method is then to derive the uncertainties
from the likelihood function. However, in principle, the properties
(coverage) would have to be proven on a case-by case basis,

e The Neyman construction gives coverage per construction.
However might be computationally much more cumbersome,
especially in the case of many parameters. If you are in a low
statistics regime, or have other reasons to believe the

e Bayesian intervals might be useful if the experimental outcome of
an experiment contradicts intuition. These intervals are simple to
calculate. Problem here: prior dependence. This might also be a
way around having to use asymptotic properties.
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Interval estimation

EXERCISE APPENDIX:
KOLMOGOROV SMIRNOV



Goodness of fit for unbinned data

e Binning data always leads to loss of information,
so in general tests on unbinned data should be

superior.

e The most commonly used tests for unbinned data
(that are distribution-free) are based on the
order statistics.

e Given N independent data points Xjy,......,x, of the
random variable X, consider the ordered sample
X1y S X(2y..=Xqyy. This is called the order statistics,
with distribution function (empirical distribution
function):

0 X{Xﬂ]
SN(X): F/N for X[F}{_X{X{l+1} I:]_.. N—1.
1 X{N] < X



Example

Difference between
two EDFs, used with
different norms (for
different tests) is
now used as a test
statistics

X

12-03-09 Jan Conrad, FK8006, Hypothesis testing and
goodness of fit



Kolmogorov-Smirnov test

e Maximum deviation of the EDF from F(X)
(expected distribution under Hy).

Dy = max |Sy(X) — F(X)|  forall X
D = max {£[Sy(X) — F(X)]} for all X

e For this test-statistics a nuII dlstrlbutlon can be

f I|m P(\/_DN:::-E —ZZ( 1) ! exp(—2r°z?)

r—=1
Jwlim P(mej > z) = exp(—22?).

12-03-09 Jan Conrad, FK8006, Hypothesis testing and
goodness of fit



