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Interval estimation  

Å Confidence intervals are used to quantify the statistical accuracy 
of a measurement. The simplest example is the standard error ,  
or standard deviation (square - root of the variance of an 
estimator), which provides such an estimate for the Gaussian 
case.  

 

Å More general: the goal of interval estimation  is to estimate 
intervals that contain the true value of a parameter with 
given probability.  The standard error for the Gaussian case will 
turn out to give the interval for which this probability is 68.3 %.  

 

Å The meaning of probability, and the operational definition of how 
the interval is estimated will differ between Bayesian and 
Frequentist intervals . A special frequentist case are so called 
Likelihood intervals.  

 

Å The choice of interval is not unique . 

  

   



Interval estimation   

 

ïBayesian  intervals (òcredibile  ( - ility ) intervalsò)  

ïExact  frequentist  intervals (òconfidence  intervalsò) 

ÅNeyman  construction  (exact  method ) in particular : unified  
approach  

ïLikelihood  intervals  

ïCLs  

ïNuisance  parameters and their  treatment  including  
real life  examples  

ïInference  with  high  dimensional  complicated  
likelihood  functions . 

ïSummary  

 

 

  

 

  

 

 

 

 

 



CREDIBILE  INTERVALS  

Interval estimation  



ÅThe Bayesian interval can be constructed from the posterior 
distribution  

 

 

 

 

ÅThe interval which contains the true value with a certain degree 
of belief is then given by an integration of the posterior 
distribution. 

 

 

 

1- Ŭ is chosen to be 0.683 (1ů) or 0.9 or 0.95. The corresponding 
interval is called credible interval (cf: frequentist: confidence 
interval). 

  

   

Bayesian interval estimation  
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Credible intervals -uniqueness  

ÅThe condition that the credible interval should 
have probability 1 -Ŭ is not sufficient to make it 
unique.  

ÅOther conditions can be imposed:  

 

ïAccept points of highest posterior density  

 

ïCentral Interval:    

 

 

 

ïOne sided interval  (upper or lower limit )  
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Upper limit  (U.L) in words  
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Frequentist: if the signal is larger than 

U.L., the probability for the  experimental 

outcome is small. 

Bayesian: the degree of belief that the 

signal is larger than the U.L. is small. 

An upper limit is of particular interest in 

particle physics, as it is often the result of 

searches for unknown physics in case of 

no detection 



Upper limit and detection limit  

In particular an upper limit should not 

be confused with the minimal detectable 

signal. 

 

Minimal detectable signal: signal that on 

average yields a result that is unlikely 

under the background only hypothesis. 



Posterior for Poisson process with uniform 
prior  
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A nice property of  Bayesian intervals  

ÅBloom: òWe are restricting the parameter to be 
larger than 0, arenôt we biasing the result, Jeff?ò 

 

ÅScargle: òIs the parameter supposed to be larger 
than 0?ò 

 

ÅBloom: òYes, it is a cross-sectionò 

 

ÅScargle:òThen it should be biased in this 
directionò. 
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Credible upper limits -  Poisson distribution with 
known background (90 % confidence level).  

Observed  0  1  2  3  

b =  0.0  2.3  3.89  5.32  6.68  

b =  0.5  2.3  3.50  4.83  6.17  

b = 1.0  2.3  3.26  4.44  5.71  

b = 2.0  2.3  3.00  3.87  4.92  



Some words on Jeffreyôs prior. 

ÅJeffreyôs prior is defined as the sqrt of the 
determinant of the Fisher Information  

 

ÅJeffreyôs prior for Poisson =>  (1/sqrt(s)) 
minimizes the Fisher information in the prior and 
is scale invariant and a proper prior Ą gives 

unreasonable upper limits, unfortunately.  
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EXACT  FREQUENTIST  
INTERVALS  

Interval estimation  



Å As we  know  the PDF for given parameter, a method  to  calculate  
confidence  intervals can  be reformulated  as a method  that  finds  
the function  Z = f( ȅ,d) such  that  the PDF in Z becomes  
independent of  the parameter ȅ. 

 

Å Example : Normal theory : Z  = (X-µ)/ů. Confidence  intervals can  
then  be readily  obtained  from evaluating  (or tabulating) the error  
function .  

 

ïThis  is all I am  going to  say  about  Normal theory , if  you  want  
more  go to  the excellent books  by Glen Cowan  or Fred James.  

 

 

Å In the general case  Ą Neyman  Construction  

 

 

  

Frequentist intervals  



Jerzy Neyman (1894 -1981)  

Åborn  in Russia  to  polish 
parents  

ÅStudied  in Charkiv 
(Ukraine )  and Warsaw , 
later also  active  in 
Berkeley.  

Å ñSuch confidence sets are easily 
obtained under the Bayesian 
assumption that the parameter is 
itself random with a known probability 
distribution, but Neymanôs aim was to 
dispense with such an assumption, 
which he considered arbitrary and 
unwarranted.ò 

 

 



Å Find the interval [ ȅll, ȅ
ul]      in ȅ ï space, such that:  

 

 

 

Å The property needs to be fulfilled independent of the true 
value.  

 

Å The interval is called the confidence interval.   The 
property described by above equation is called coverage :  

  

 In a very large number of experiments, each 
providing a confidence interval [ ȅll,, ȅ

ul ], the fraction 
of intervals that contain the true value is 1 -  Ŭ, 
independent of what the true value is.   

 

 The random variable is  the interval [ ȅll,ȅ
ul ]  

)|(1 ultruelldp qqqa <<=-
C

Frequentist  intervals  



"Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability". 
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and 
Physical Sciences  236  (767): 333 ï380.  

Exact frequentist intervals -  The Neyman 
construction  

 

Exp 1 
Exp 2 

Exp 3 



ÅAs mentioned  earlier , the requirement  on the 

confidence  belt  to  contain  a fraction  1-a or 

experimental outcomes  does  not define  it uniquely . 

 

ÅThere  is complete  freedom  to  choose  the 
observational  outcomes  (you  can  come up  with  
some  yourself !)  

 

 

ÅCentral interval:  

 

 

ÅUpper  limit:  

 

Upper limits and Central 
intervals  
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Central intervals and upper limits.  



Flip - flopping  



Unified confidence intervals.  

ÅA more clever way to choose which observations to 
include in the confidence interval by is computing the 
likelihood ratio and rank the observations accordingly  
 
 
 
 
 

ÅFor given observation x and parameter ȅo include 
first the one with highest R, then next - to highest R 
until you reach 1 -a. 

 
ÅThis is known as the òFeldman&Cousins Confidence 
Intervalò 

  G. Feldman + R. Cousins, Phys.Rev. D. 57, 1998  
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Illustration: Poisson case confidence belt  

ÅCan you guess what µ  and b are ?  

Taken from original FC paper 
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Comparison, U.L. m unified intervals.  

Upper  

limits  

Observed  
 

0  1  3  

b =  0.0  2.30  3.89  6.68  

b =  1.0  1.30  2.89  5.58  

b = 3.0  - 0.70  0.89  3.68  

Observed  
 

0  1  3  

b =  0.0  2.44  4.36  7.42  

b =  1.0  1.61  3.36  6.42  

b = 3.0  1.08  1.88  4.42  

Unified  
intervals  



Confidence intervals for discrete data  

ÅConfidence  intervals can  exactly  acquire  

probability  1 -  a only  if  the observable  is 

continous . 

Å If the data is discrete  (as is the case  in the 
Poission  distribution), we  need  to  replace  the 
integral with  a sum  and the requirement  will  also  
have  to  be altered  as:  

 

 

 

 

The coverage  will  be exactly  fulfilled only  for certain  
values  of  the nuisance  parameter.  
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Upper Limits  



Coverage with Flip - flopping  

 

T. Dorigo? 

Two-sided 

intervals when 

measurement 

> 4ů away 

from zero 

(Gaussian 

process). 



Feldman -Cousins  

 



LIKELIHOOD  INTERVALS  

Interval estimation  
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Likelihood intervals  

ÅNormal theory: pdf can be converted into a 
likelihood function (L)  by exchanging X and µ. 

Then: lnL  becomes a parabola:  

 

 

 



Why is this useful?  

ÅIf Normal theory  is applicable , log - likelihood  is 
parabolic  

ÅIf likelihood  is parabolic , normal theory  is 
applicable  

ÅAssume : the likelihood  is non -parabolic , but  it 
can  be transformed into  a parabolic  one  (by a 
transformation of  the parameter)  

ÅBut  the likelihood  values  are  invariant under this  
transformation, thus  even  in this  case :  

 

 

é for 1ů intervalsé 
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2/1lnln max-= LL



Non -  parabolic likelihood  

F. James, Statistical Methods  
in Experimental Physics .  



Other confidence levels and least -square fits.  

1
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Likelihood intervals ï Poisson with known 
background (90%/95% confidence level.)  

Observed  0  1  3  

b =  0.0  1.36  3.65  6.82  

b =  1.0  0.36  2.65  5.81  

b = 3.0  - 1.64  0.65  3.82  

Observed  
 

0  1  3  

b =  0.0  1.98  3.65  6.81  

b =  1.0  0.99  2.65  5.81  

b = 3.0  0.64  0.65  3.81  

likelihood 

TRolke 

Rolke, Lopez,Conrad, Nucl.Instrum.Meth. A551 (2005) 493-503   
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Neyman  construction  provide  coverage , 
what  about  likelihood  intervals?  
 

Yes, asymptotically, but not necessarily for 

small samples. 



Coverage of likelihood intervals 
(Poisson 90% two sided)  
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Coverage in practice  
Å . 

12/17 = 0.705 



CLS    -  MODIFIED  
FREQUENTIST  

Interval estimation  



CLs  --  motivation  
 

 
Å The CLs method  is introduced  to  avoid  the case  where  a generic  

method  (say  Feldman&Cousins  or likelihood ) would  command  
exclusion  of  signal hypotheses  to  which  the experiment has no or 
little  sensitivity . 
 

Å This  would  happen  if  you  observe  a downward  fluctuation  of  your  
expected  background , which  might  be more  likely  to  point  towards  
a problem in your  background  modelling .  
 
 

Å And a  purely  frequentist  method  you  can  produce  better  limits by 
adding  background  regionsé.. 
 

Å Can we  come up  with  a upper  limit that  will  allow  robust 
statements  about  the signal parameter even  in this  case? 

 
 

Å A L Read  2002 J. Phys. G: Nucl . Part. Phys.  28  2693  
  

 



Claimed to refute LSND oscillation signal  

 


