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Interval estimation

A

Confidence intervals are used to quantify the statistical accuracy

of a measurement. The simplest example is the standard error
or standard deviation (square -root of the variance of an
estimator), which provides such an estimate for the Gaussian

case.

More general: the goal of Interval estimation IS to estimate
intervals that  contain the true value of a parameter with

given probability. The standard error for the Gaussian case will
turn out to give the interval for which this probability is 68.3 %.

The meaning of probability, and the operational definition of how
the interval is estimated will differ between Bayesian and
Freguentist intervals . A special frequentist case are so called
Likelihood intervals.

The choice of interval is not unique



Interval estimation

| Bayesian i nt er vceetilmle (-dity) 1 nter va
i Exact frequentist | nt er vcarfidencé 0 nt er v &

A Neyman construction (exact method )in particular : unified
approach

I Likelihood intervals

i CL,

I Nuisance parameters and their treatment including
real life examples

I Inference with high dimensional complicated
likelihood functions .

I Summary



Interval estimation

CREDIBILE INTERVALS



Bayesian interval estimation

A The Bayesian interval can be constructed fronptisterior

distribution
P(X|q)P(q)
P(X|q)P(g)dg

p(g| X) =

A The interval which contains the true value with a cedaigree
of beliefis then given by an integration of the posterior

distribution. UL

1-a=f). pgIX)dg

1- Uis chosen to be 0.683{Lor 0.9 or 0.95. The corresponding
Interval is calleccredible interval (cf: frequentist: confidence
Interval).



Credible intervals  -uniqueness

A The condition that the credible interval should
have probability 1  -U is not sufficient to make it
unique.

A Other conditions can be imposed:
I Accept points of highest posterior density

I Central Interval:

1 _’3 _’gLL
>2=Q. P@IX)dg=p, plg|X)dg

I One sided interval (upper or lower limit

a=f,. p(gIX)dg
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Upper Iimit (U.L) in words

An upper limit is of particular interest in

particle physics, as it is often the result of

searches for unknown physics in case of
no detection

Bayesian:the degree of belief that the
signal Is larger than the U.L. is small.

Frequentist:if the signal is larger than
U.L., the probability for the experimental
outcome Is small.

12-03-07 Jan Conrad, FK8006, Interval estimation



Upper limit and detection limit

In particular an upper limit should not
be confused with the minimal detectable
signal.

Minimal detectable signal: signal that on
average Yyields a result that is unlikely
under the background only hypothesis.



Posterior for Poisson process with uniform
prior

01 2 34567 89 10
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A nice property of Bayesian intervals

ABl oom: OWe are restricting
| arger than 0, arenot we bi
AScargle: o0ls the parameter

t han 07?0
ABl oom: OYes, -Becitsoadcross

AScargle: 0Then it should be
directiono.
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Credible upper limits - Poisson distribution with
known background (90 % confidence level).

b= 0.0 2.3 3.89 5.32 6.68
b= 05 2.3 3.50 4.83 6.17
b=1.0 2.3 3.26 4.44 5.71
b=20 2.3 3.00 3.87 4.92

012 3 45 6 7 8 910

01 2 3 4 5 6 7 8 ! 0
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Some words on Jeffreyos p

AdJeffreyods prior is defined
determinant of the Fisher Information

Adeffreyos prior for Poisson
minimizes the Fisher information in the prior and
IS scale invariant and a proper prior A gives
unreasonable upper limits, unfortunately.
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Interval estimation

EXACT FREQUENTIST
INTERVALS



Frequentist intervals

A As we know the PDF for given parameter, a method to calculate
confidence intervals can be reformulated asa method that finds
the function Z=1( e,d) such that the PDFinZ becomes
independent of the parameter €.

A Example : Normal theory : Z = (X-p)/G. Confidence intervals can
then be readily obtained from evaluating (or tabulating) the error
function .

I This isalll am going to say about Normal theory , if you want
more go to the excellent books by Glen Cowan or Fred James.

A Inthe general case A Neyman Construction



Jerzy Neyman (1894 -1981)

A born in Russia to polish
parents

A Studied in Charkiv
(Ukraine ) and Warsaw ,
later also active In
Berkeley.

A AiSuch confidence set s
obtained under the Bayesian
assumption that the parameter is
itself random with a known probability
distribution, but N e y ma raiinsvas to
dispense with such an assumption,
which he considered arbitrary and
unwarranted. 0




Frequentist Iintervals

A Find theinterval[ &, &Y] in &7 space, such that:

1- a= p(d |C7II <qrue<qul)

A The property needs to be fulfilled independent of the true
value.

A The interval is called the confidence interval. The
property described by above equation is called coverage

In a very large number of experiments, each

providing a confidence interval [e, eu], the fraction
of intervals that contain the true value is 1 - U,
independent of what the true value is.

[&, e]



Exact frequentist intervals - The Neyman
construction

Confidéiiess intervals

S P(n|s)
s [---------__ Belgovering the true
_true : sin 1 -o

S] fF------- - / - [ss] = Conifidence

S :

s3] - nterval

2 -
%
. -
n

"Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability".
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences 236 (767):333 i 380.



Upper limits and Central
Intervals

A As mentioned earlier , the requirement on the

confidence belt to contain a fraction 1-A or
experimental outcomes does not define it uniquely .

A There is complete freedom to choose the
observational outcomes (you can come up with
some yourself !)

@] nl

a=f p(nlg)dn=F p(n|g)dn

NG|

A Central interval:

N | =

c

A Upper limit: a = ﬁ p(n\q)dn



Central intervals and upper limits.

mearn ji

0.9-upper-limit

[ | | | | | | | |
-2 -1 0 I 2 3 1 o fi

measured mean T



Flip - flopping

mean ji

I I I I I I I I
-2 -1 0 1 2 3 - o 6

measured mean T

Flip-flopping for a Gaussian measurement. The shaded area represents the
effective confidence belt resulting from choosing to report an upper limit
only when the measurement is less than 30 above zero. This effective belt
undercovers for 1.2 < pu < 4.3, for example at g = 2.5 where the intervals
AC and Boc each contain 90% probability but BC contains only 85%.



Unified confidence intervals.

A A more clever way to choose which observations to
Include In the confidence interval by is computing the
likelihood ratio and rank the observations accordingly

_ L(X1g)
P(X |qbest)

A For given observation x and parameter Include
first the one with highest R, then next -toohlghest R
untilyoureach1l -a

AThis is known as the OFel
|l nterval o
G. Feldman + R. Cousins, Phys.Rev. D. 57, 1998

d ma



lllustration: Poisson case confidence belt

1 P(n|u) Hbest P(n|ppest) R rank U.L. central
0 0.030 0. 0.050 0.607 G

1 0.106 () 0.149 0.708 3 v vi
2 0.185 0 0.224 0.826 3 v v
3 0.216 0. 0.224 0.963 2 v vi
4 0.189 1. 0.195 0.966 1 v v
5 (.132 2. 0.175 0.753 4 v v
G 0.077 3. 0.161 0.480 T N v
7 0.039 4, 0.149 0.259 v vi
8 0.017 5. 0.140 0.121 v

0 0.007 6. 0.132 0.050 v

10 0.002 T. 0.125 0.018 v

11 0.001 8. 0.119 0.006 v

Taken from original FC pape

A Canyou guess what p and b are ?
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Comparison, U.L. m unified intervals.

Upper
b= 0.0 2.30 3.89 6.68 limits
b= 1.0 1.30 2.89 5.58
b=3.0 -0.70 0.89 3.68

Unified
b= 0.0 2.44 4.36 7.42 Intervals
b= 1.0 1.61 3.36 6.42
b=23.0 1.08 1.88 4.42
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Confidence intervals for discrete data

A Confidence intervals can exactly acquire

probability 1 - a only if the observable is
continous .

A Ifthe datais discrete (asisthe case inthe
Poission distribution), we need to replace the
Integral with a sum and the requirement will also
have to be altered as:

ul

1- a = pp(xkpdx- 1- a2 & P(n|s)
X I=ny

The coverage will be exactly fulfiled only for certain
values of the nuisance parameter.
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Upper Limits
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Coverage with Flip

-flopping

Coverage for a=0.1 with Flip-Flopping at 4-sigma
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0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

0-8llll

|

IIIIIII|Illllllllllllll[lllllll]lllllll

lllllllllllllllllllll

4 5 6 7 8
True value of u (in ¢ units)

T. Dorigo?

Two-sided
Intervals when
measurement
> 4 away
from zero
(Gaussian
process).



Feldman -Cousins

Coverage
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Interval estimation

LIKELIHOOD  INTERVALS
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Likelihood intervals

A Normal theory: pdf can be converted into a
likelihood function (L) by exchanging X and
Then: InL becomes a parabola:

In L




Why is this useful?

A If Normal theory is applicable , log -likelihood is
parabolic

A If likelihood is parabolic , normal theory is
applicable

A Assume : the likelihood is non -parabolic , but it
can be transformed Into a parabolic one (by a
transformation  of the parameter)

A But the likelihood values are invariant under this
transformation, thus even In this case:

nL=InL__ -1/2

@ f ouri nit er val sé
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Non - parabolic likelihood

o=y
P AL

InL

F. James, Statistical Methods
in Experimental Physics .



Other confidence levels and least

2

nL~-S - ¢2
2

2
min

=C

+1

-square fits.

Confidence level (probability contents desired inside

Number of hypercontour of x* — x2. + UP)
Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 3.84 6.63
2 1.39 241 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71
IfFCH is — log(likelihood) instead of x*, all values of UP

should be divided by 2.

Table 7.1: Table of UP for multi-parameter confidence regions



Likelihood intervals

b= 0.0
b= 1.0
b=3.0
b= 0.0
b= 1.0
b=3.0

Rolke, Lopez,Conradjucl.Instrum.Meth. A551 (2005) 493503

1.36
0.36
-1.64

1.98
0.99
0.64

3.65
2.65
0.65

3.65
2.65
0.65

Poisson with known
background (90%/95% confidence level.)

6.82
5.81
3.82

6.81
5.81
3.81

likelihood

Rolke



Neyman construction provide coverage ,
what about likelihood Intervals?

Yes, asymptotically, but not necessarily for
small samples.
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Coverage of likelihood intervals
(Poisson 90% two sided)
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A

Coverage In practice

WEIGHTED AVERAGE
0.006 = 0.018 (Error scaled by 1.3)

2

.

A I - SMITH 75B WIRE
| \—I— - " NIEBERGALL 74 ASPK
HT - - FACKLER 73 OSPK
— - - HART 73 OSPK
— | - MALLARY 73 OSPK
—— " BURGUN 72 HBC
—— -~ GRAHAM 72 OSPK
[ = MANN 72 HBC
|' |\ ——+—  WEBBER 71 HBC
e e - CHO 70 DBC
| =+ -'.I - - BENNETT 69 CNTR
| i LITTENBERG 69 OSPK
[ — - JAMES 68 HBC
." ] . FELDMAN 67B OSPK
— - AUBERT 65 HLBC
L - BALDO-._. 65 HLBC
— - FRANZINI 65 HBC
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03
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0.1
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0.2

22.0

(Confidence Level = 0.107)

12/17 =0.705



Interval estimation

CLs; - MODIFIED
FREQUENTIST



CL. -- motivation

The CLs method Is introduced to avoid the case where a generic
method (say Feldman&Cousins or likelihood ) would command
exclusion of signal hypotheses to which the experiment has no or
little sensitivity .

This would happen if you observe a downward fluctuation of your
expected background , which might be more likely to point towards
a problemin your background modelling .

And a purely frequentist method you can produce better limits by
adding background r egi ons é.

Can we come up with a upper limit that will allow robust
statements about the signal parameter even in this case?

AL Read 2002 J.Phys.G: Nucl. Part. Phys. 28 2693



Claimed to refute LSND oscillation signal



