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Interval estimation  

• Confidence intervals are used to quantify the statistical accuracy 
of a measurement. The simplest example is the standard error,  
or standard deviation (square-root of the variance of an 
estimator), which provides such an estimate for the Gaussian 
case. 

 

• More general: the goal of interval estimation is to estimate 
intervals that contain the true value of a parameter with 
given probability.  The standard error for the Gaussian case will 
turn out to give the interval for which this probability is 68.3 %. 

 

• The meaning of probability, and the operational definition of how 
the interval is estimated will differ between Bayesian and 
Frequentist intervals. A special frequentist case are so called 
Likelihood intervals. 

 

• The choice of interval is not unique. 

  

   



Interval estimation  

 

– Bayesian intervals (”credibile (-ility) intervals”)  

– Exact frequentist intervals (”confidence intervals”) 

• Neyman construction (exact method) in particular: unified 
approach  

– Likelihood intervals 

– CLs  

– Nuisance parameters and their treatment including 
real life examples  

– Inference with high dimensional complicated 
likelihood functions. 

– Summary 

 

 

  

 

  

 

 

 

 

 



CREDIBILE INTERVALS 

Interval estimation 



• The Bayesian interval can be constructed from the posterior 
distribution 

 

 

 

 

• The interval which contains the true value with a certain degree 
of belief is then given by an integration of the posterior 
distribution. 

 

 

 

1- α is chosen to be 0.683 (1σ) or 0.9 or 0.95. The corresponding 
interval is called credible interval (cf: frequentist: confidence 
interval). 

  

   

Bayesian interval estimation 
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Credible intervals -uniqueness 

• The condition that the credible interval should 
have probability 1-α is not sufficient to make it 
unique. 

• Other conditions can be imposed: 

 

– Accept points of highest posterior density 

 

– Central Interval:   

 

 

 

– One sided interval (upper or lower limit) 
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Upper limit  (U.L) in words 
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Frequentist: if the signal is larger than 

U.L., the probability for the  experimental 

outcome is small. 

Bayesian: the degree of belief that the 

signal is larger than the U.L. is small. 

An upper limit is of particular interest in 

particle physics, as it is often the result of 

searches for unknown physics in case of 

no detection 



Upper limit and detection limit 

In particular an upper limit should not 

be confused with the minimal detectable 

signal. 

 

Minimal detectable signal: signal that on 

average yields a result that is unlikely 

under the background only hypothesis. 



Posterior for Poisson process with uniform 
prior 
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A nice property of  Bayesian intervals 

• Bloom: ”We are restricting the parameter to be 
larger than 0, aren’t we biasing the result, Jeff?” 

 

• Scargle: ”Is the parameter supposed to be larger 
than 0?” 

 

• Bloom: ”Yes, it is a cross-section” 

 

• Scargle:”Then it should be biased in this 
direction”. 
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Credible upper limits- Poisson distribution with 
known background (90 % confidence level). 

Observed 0 1 2 3 

b = 0.0 2.3 3.89 5.32 6.68 

b = 0.5 2.3 3.50 4.83 6.17 

b = 1.0 2.3 3.26 4.44 5.71 

b = 2.0 2.3 3.00 3.87 4.92 



Some words on Jeffrey’s prior. 

• Jeffrey’s prior is defined as the sqrt of the 
determinant of the Fisher Information 

 

• Jeffrey’s prior for Poisson =>  (1/sqrt(s)) 
minimizes the Fisher information in the prior and 
is scale invariant and a proper prior  gives 

unreasonable upper limits, unfortunately. 
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EXACT FREQUENTIST 
INTERVALS 

Interval estimation 



• As we know the PDF for given parameter, a method to calculate 
confidence intervals can be reformulated as a method that finds 
the function Z = f(θ,d) such that the PDF in Z becomes 
independent of the parameter θ. 

 

• Example: Normal theory: Z = (X-µ)/σ. Confidence intervals can 
then be readily obtained from evaluating (or tabulating) the error 
function.  

 

– This is all I am going to say about Normal theory, if you want 
more go to the excellent books by Glen Cowan or Fred James.  

 

 

• In the general case  Neyman Construction 

 

 

  

Frequentist intervals 



Jerzy Neyman (1894-1981) 

• born in Russia to polish 
parents 

• Studied in Charkiv 
(Ukraine)  and Warsaw, 
later also active in 
Berkeley. 

• “Such confidence sets are easily 
obtained under the Bayesian 
assumption that the parameter is 
itself random with a known probability 
distribution, but Neyman’s aim was to 
dispense with such an assumption, 
which he considered arbitrary and 
unwarranted.” 

 

 



• Find the interval [θll, θ
ul]     in θ – space, such that: 

 

 

 

• The property needs to be fulfilled independent of the true 
value. 

 

• The interval is called the confidence interval.   The 
property described by above equation is called coverage: 

  

 In a very large number of experiments, each 
providing a confidence interval [θll,, θ

ul], the fraction 
of intervals that contain the true value is 1- α, 
independent of what the true value is.  

 

 The random variable is the interval [θll,θ
ul]  

)|(1 ultruelldp  
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Frequentist intervals 



"Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability". 
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and 
Physical Sciences 236 (767): 333–380. 

Exact frequentist intervals- The Neyman 
construction 

 

Exp 1 
Exp 2 

Exp 3 



• As mentioned earlier, the requirement on the 

confidence belt to contain a fraction 1- or 

experimental outcomes does not define it uniquely. 

 

• There is complete freedom to choose the 
observational outcomes (you can come up with 
some yourself!) 

 

 

• Central interval:  

 

 

• Upper limit:  

 

Upper limits and Central 
intervals 
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Central intervals and upper limits. 



Flip-flopping 



Unified confidence intervals. 

• A more clever way to choose which observations to 
include in the confidence interval by is computing the 
likelihood ratio and rank the observations accordingly 
 
 
 
 
 

• For given observation x and parameter θo include 
first the one with highest R, then next-to highest R 
until you reach 1-. 

 
• This is known as the ”Feldman&Cousins Confidence 

Interval” 
  G. Feldman + R. Cousins, Phys.Rev. D. 57, 1998 
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Illustration: Poisson case confidence belt 

• Can you guess what µ  and b are ? 

Taken from original FC paper 
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Comparison, U.L. m unified intervals. 

Upper  

limits 

Observed 
 

0 1 3 

b = 0.0 2.30 3.89 6.68 

b = 1.0 1.30 2.89 5.58 

b = 3.0 -0.70 0.89 3.68 

Observed 
 

0 1 3 

b = 0.0 2.44 4.36 7.42 

b = 1.0 1.61 3.36 6.42 

b = 3.0 1.08 1.88 4.42 

Unified 
intervals 



Confidence intervals for discrete data 

• Confidence intervals can exactly acquire 

probability 1 -  only if the observable is 

continous. 

•  If the data is discrete (as is the case in the 
Poission distribution),we need to replace the 
integral with a sum and the requirement will also 
have to be altered as: 

 

 

 

 

The coverage will be exactly fulfilled only for certain 
values of the nuisance parameter.  
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Upper Limits 



Coverage with Flip-flopping 

 

T. Dorigo? 

Two-sided 

intervals when 

measurement 

> 4σ away 

from zero 

(Gaussian 

process). 



Feldman-Cousins 

 



LIKELIHOOD INTERVALS 

Interval estimation 
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Likelihood intervals 

• Normal theory: pdf can be converted into a 
likelihood function (L)  by exchanging X and µ. 

Then: lnL  becomes a parabola: 

 

 

 



Why is this useful? 

• If Normal theory is applicable, log-likelihood is 
parabolic 

• If likelihood is parabolic, normal theory is 
applicable 

• Assume: the likelihood is non-parabolic, but it 
can be transformed into a parabolic one (by a 
transformation of the parameter) 

• But the likelihood values are invariant under this 
transformation, thus even in this case: 

 

 

… for 1σ intervals… 
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2/1lnln max  LL



Non- parabolic likelihood 

F. James, Statistical Methods 
in Experimental Physics. 



Other confidence levels and least-square fits. 

1
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Likelihood intervals – Poisson with known 
background (90%/95% confidence level.) 

Observed 0 1 3 

b = 0.0 1.36 3.65 6.82 

b = 1.0 0.36 2.65 5.81 

b = 3.0 -1.64 0.65 3.82 

Observed 
 

0 1 3 

b = 0.0 1.98 3.65 6.81 

b = 1.0 0.99 2.65 5.81 

b = 3.0 0.64 0.65 3.81 

likelihood 

TRolke 

Rolke, Lopez,Conrad, Nucl.Instrum.Meth. A551 (2005) 493-503   
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Neyman construction provide coverage, 
what about likelihood intervals? 
 

Yes, asymptotically, but not necessarily for 

small samples. 



Coverage of likelihood intervals 
(Poisson 90% two sided) 
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Coverage in practice 
• . 

12/17 = 0.705 



CLS    - MODIFIED 
FREQUENTIST 

Interval estimation 



CLs  -- motivation 
 

 
• The CLs method is introduced to avoid the case where a generic 

method (say Feldman&Cousins or likelihood) would command 
exclusion of signal hypotheses to which the experiment has no or 
little sensitivity. 
 

• This would happen if you observe a downward fluctuation of your 
expected background, which might be more likely to point towards 
a problem in your background modelling.  
 
 

• And a  purely frequentist method you can produce better limits by 
adding background regions….. 
 

• Can we come up with a upper limit that will allow robust 
statements about the signal parameter even in this case? 

 
 

• A L Read 2002 J. Phys. G: Nucl. Part. Phys. 28 2693 
  

 



Claimed to refute LSND oscillation signal 

 



Slide from seminar talk 2005… 
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Now there is: CLs 
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Figures taken from ATLAS note for conference speakers, Glenn   

  



Untervals CLs (Poisson with known 
background 90% conf. level.)  

Observed 
CLs 

0 1 3 

b = 0.0 2.3 3.89 6.68 

b = 1.0 2.3 3.27 5.71 

b = 3.0 2.3 2.84 4.36 

Observed 
Neyman 

0 1 3 

b = 0.0 2.3 3.89 6.68 

b = 1.0 1.3 2.89 5.68 

b = 3.0 -0.69 0.89 3.68 

CLs 

Neyman 

U.L. 



Remarks on CLs  

• There is a prize to pay  over-coverage 
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Taken from G. 

Cowans note on 

CLs 



Conditioning on the background: 
Roe&Woodroofe   Phys.Rev. D60 (1999) 053009 

• Unified ordering with background conditioning 
(conditional probability to see n events given at 
most n_0 background events) 

JC+, Pre-Phyststat conference  arxiv:0206034, Durham 2002   



More remarks on CLs  

• CLs applicable with any test statistic 

• Same limits from Bayesian for Poisson and Gauss estimates 
of mean for uniform prior. 

• CLs  is by now  standard in ATLAS, it seems …. it is also 
used – guilt by association – in astroparticle physics 
(Xenon/LUX(?)). 

• Feldman & Cousins also realized the problem of exclusion 
beyond sensitivity. 

• They proposed to always present the actual upper limit 
together with the sensitivity (mean upper limit in case of 
background only). 

• The solution of FC seems more purist in the frequentist 
sense. 
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Summary  
 

• Parameter intervals are used to quantify the 
statistical accuracy of a measurement. The 
simplest example is the standard error, which is 
the standard deviation (square-root of the 
variance of an estimate), 

 

• More general, the goal of interval estimation is 
to estimate intervals that contain the true 
value of a parameter with given probability.  
The standard error for the Gaussian case will turn 
out to give the interval for which this probability 
is 68.3 %. This will usually be a two sided 
interval, which we choose to report for a point 
measurement.  

 



Summary 

• Upper limits are a special case of confidence 
intervals. 
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Frequentist: if the signal is larger than 

U.L., the probability for the  experimental 

outcome is small. 

Bayesian: the degree of belief that the 

signal is larger than the U.L. is small. 
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Summary 

 

• Four methods have been discussed so far: 

 

– Credible intervals (Bayesian) 

– Exact frequentist intervals (Neyman construction) 

– Likelihood intervals  

– CLS  

 

 

 

 

 



NUISANCE PARAMETERS 
AND THEIR TREATMENT 

Interval estimates 
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Nuisance parameters 

• Nuisance parameters are parameters in the problem 
which affect the result but which are not of prime 
interest. 

 

• Two examples: 

  

– Measure the x-sec for dark matter annihilation 
and estimate an interval on it. Mass of dark 
matter particle is then a nuisance parameter. 

 

– Measure the rate of a process and estimate an 
interval on it. Background expectation is a 
nuisance parameter. 

 



Nuisance parameter and systematic 
uncertainties 

• Example 1: both parameters are of interest, a 
confidence interval (ellipse) in both parameters 
would be relevant. 

 

• Example 2: background is an experimental 
uncertainty. A  confidence interval in both the 
signal strength and background strength is not 
very interesting  

 

want to report confidence interval only in 
signal strength, however, taking into account 
the uncertainty in background  “project” on 
parameter of interest  how? 
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Nuisance parameters and systematic 
uncertainties 

• Systematic uncertainties: uncertainties that do 
not become smaller with increasing size of data 
sample. 

 

• I will be using the more general definition: 
uncertainties in parameters that are determined 
in ancillary experiments. 



There are two general methods 

)(lnmax)()(ln ,  


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• Profile likelihood (frequentist): 

 

 

 

 

• Marginalisation (Bayesian) 

)()()( ....1....1 kikikeff LdLL  


Frequentist treatment: 

hybrid (freq./bayesian) 

Calculate posterior 

from it: Bayesian 12-03-07 



Let us consider a concrete example. 

• Search for excess over background. 

• Background determined by side-
band/control region measurements. 

a a 



Let us write down the likelihood 

• Sideband measurement of background: 

 

 

 

 

• And another common case, normal uncertainties 
on background and detector efficiency. 
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Credible Intervals –marginalisation 

• In the Bayesian approach you can find the posterior for the 
nuisance parameter and integrate over them, eg. with 
Gaussian uncertainties on efficiency and background this could 
look like: 

 

 

 

• i.e. a Poisson convolved with two Gaussians. 
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Coverage of Bayesian intervals 

• A general approach for physicists (and also for 
statisticians) is to use Bayesian methods and to 
study their frequentist properties. 

Bayesian method acceptable if reasonable 
frequentist properties 

 

Frequentist properties maybe a good  
diagnostic for problems in the Bayesian 
approach.  

 

 Let us give an example ….. 



Generically overcovering 

• Poisson process with uncertainty in background 
and efficiency 

J. Heinrich, PHYSSTAT 2005 



Combining several measurments 
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Can be fixed with choice of prior. 
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• A very convenient way to reduce the 
dimensionality to the parameter of interest is the 
profile likelihood, i.e. for given parameter of 
interest xk,  the likelihood is maximized with 
respect to all other parameters: 

 

 

• Interval inference is then performed on   (i.e.: 
for 1σ uncertainties: 

)(lnmax)( ,  


Lkik i 

2/1)()(  kk 

Profile likelihood 
See Cowan et al for an extensive discussion of asymptotic properties and 

useful modifications   



Example: background nuisance 
parameter 
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Rolke, Lopez,Conrad, Nucl.Instrum.Meth. A551 (2005) 493-503   

  



Example 2: uncertainty in detection efficiency 
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Likelihood intervals: coverage, 
background as nuisance parameter 

MLE set to 0 

if < 0 

 

Lower limit 

set to 0 if 

MLE<0. 

 



TRolke 

• Useful if you have Poisson process with 
uncertainties on efficiency or background  
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Historical slide: profile likelihood for marked 
Poisson 
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Example from my own research. 
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Indirect detection of dark matter 
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Slide from Brandon Anderson (Stockholm)  
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Effect on likelihood 

 



Exciting results. 

 



Typical LHC profile likelihood (H-> ) 

Mass distribution 

Signal 

normalization 



The test statistics of GCVG for intervals. 

• Profile likelihood ratio 
upper limit 

• Profile likelihood 
ratio,TS becomes 
constant if negative 
MLE, two-sided. 

• Provides common framework for upper limits and 
discovery, provides asymptotic properties.  

 

    

• Profile likelihood ratio 
upper limit, provides 
some CLs type 
protection 

 Cowan Cranmer, Gross, Vitells   Eur.Phys.J. C73 (2013) 2501  



Neyman construction and nuisance 
parameters. 

• There is no standard solution to the task of 
including nuisance parameters into the Neyman 
construction 

• One way to deal with nuisance parameters is to 
use a modified PDF, e.g in presence of a 
Gaussian background uncertainty: 

 

 

 

• Then the construction proceeds as usual 
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 see JC    Phys.Rev. D67 (2003) 012002, Cousins& Highland (1992) 
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Example intervals for Feldman Cousins 
ordering and nusiance parameters. 

 JC +  Phys.Rev. D67 (2003) 012002 



What would it do to an upper limit on 
dark matter – indirect detection with 
neutrinos 

 JC +  Phys.Rev. D67 (2003) 012002 



pole++   
https://code.google.com/p/polepp/ 



Neyman construction provides coverage, 
any modifaction needs to provide the same 
property. 
 
Would the new intervals still exhibit 
coverage? 
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Feldman Cousins with Bayesian 
treatment of background uncertainties. 

Tegenfeldt+JC, Nucl.Instrum.Meth. A539 (2005) 407-413 
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Feldman Cousins Profile Likelihood Ratio 
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• Remember likelihood ratio: 
 
 
 
 
 

• Knowing about the profile likelihood an obvious 
ansatz is: 
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Example (taken from G. Feldman talk) 
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Unified approach and nuisance parameters 

• I am not aware of any practial application of this 
method. 

 

• I assume that the method is largely superseeded 
by the profile likelihood (Rolke+, Cowan+) 

 

• Should be useful for example in low statistics 
experiments (e.g. double beta decay) 
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Nuisance parameters and pseudoexperiments 

• Assume  Poisson distribution with parameter s 
and expected background b. You choose to treat 
the nuisance parameter b in Bayesian way: 

 

 

 

• To test this with pseudoexperiments you have to 
fix s and b and draw n and best  i. e. in your 
analysis the Gaussian will be centered on a 
different value for each pseudoexperiment. 

 

• Always keep track of what is measured and what 
is true. 
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COMPLICATED 
LIKELIHOOD SPACES 

Confidence intervals 
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Inference on beyond the standard model 
physics 

09-08-07 Jan Conrad, Oskar Klein Centre, Stockholms Universitet 
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So … what is the big deal? 

• High dimensional parameter space (~200 
parameters easily conceivable) 

 

• Parameters are not coupled to observables 
in a linear way (RGE,astrophysical 
uncertainties), requires numerical 
calcuations 

 

• Multi-modal likelihood space 

 

• Non-trivial experimental likelihoods  

Most likely we are facing a formidable task in 

parameter estimation in the near future. 
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• Example: Constrained MSSM 
– Unification at GUT scale, gravity mediated SU-symmetry breaking and 

electroweak symmetry breaking 

– Gaugino masses: m1/2         (btw: m1/2 ~ 2 mχ ) 

– Scalar masses: m0 

– Trilinear couplings: A0 

– Higgs vacuum expectation ratio: tan β   

– Higgs mixing parameter:  µ2 

          

• MSSM-7, MSSM-13, pMSSM (29 parameters) … 

    

5 free parameters  

Parameters of the theory 



93 

Challenges even in simplest Supersymmetric (4 
parameters. CMSSM) theory 

• Prior dependence 

–  Flat  vs. Log priors give signifcantly different results.  

– Remedied when including more data (LHC  for CMSSM, but 

what happens if we have to go to 100 parameters?) 

 

flat flat 
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Challenges even in simplest Supersymmetric (4 
parameters. CMSSM) theory 

• Frequentist properties 

–  Both over and undercoverage 

 

– Bad sampling of the likelihood, boundaries on the parameters, 

flat prior in many dimensions (my guess) …. 

 

 

Bridges+, JHEP  1103(2011) 012, LHC 

Akrami+, JCAP 1107 (2011) 002  
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Challenges even in simplest Supersymmetric (4 
parameters. CMSSM) theory 

• Sensitivity to fine-tuning (especially for profile likelihood) 

–  PL picks ”false” or ”true” likelihood peaks 

–  PL much more sensitive to adequate sampling of the likelihood  

– Can machine learning help ?? 

–  likelihood free inference. 

 

 

 

e.g. Feroz+, JHEP 1106:042,2011  



Volume effects (flat priors in many dimensions)  

• Example: effective field theory approach to 
direct detection of dark matter ( 11 couplings, 
6 nuisance parameters), flat priors. 

Catena and Gondolo, JCAP 1409 

(2014) 09, 045   
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Summary  
 

• Parameter intervals are used to quantify the 
statistical accuracy of a measurement. The 
simplest example is the standard error, which is 
the standard deviation (square-root of the 
variance of an estimate), 

 

• More general, the goal of interval estimation is 
to estimate intervals that contain the true 
value of a parameter with given probability.  
The standard error for the Gaussian case will turn 
out to give the interval for which this probability 
is 68.3 %. This will usually be a two sided 
interval, which we choose to report for a point 
measurement.  

 



Summary 

• Upper limits are a special case of confidence 
intervals. 
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Frequentist: if the signal is larger than 

U.L., the probability for the  experimental 

outcome is small. 

Bayesian: the degree of belief that the 

signal is larger than the U.L. is small. 



12-03-07 Jan Conrad, FK8006, Interval estimation 

Credible intervals. 
• Credible intervals:  intervals are obtained by integration of the 

posterior distribution. 

 

 

 

• Non-unique: additional condition: Upper limits, central limits or 
Highest Posterior Density   

 

• Most useful if scientist wants to avoid unintuitive results 

 

• In many dimensions: beware volume effects 
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• Frequentist intervals, coverage: 

  

 In a very large number of experiments, each providing a 
confidence interval [θll,, θ

ul], the fraction of intervals that 
contain the true value is 1- α, independent of what the 
true value is.  

 

 The random variable is the interval [θll,, θ
ul], 

 

• As we know the PDF for given parameter, a method to calculate 
confidence intervals can be reformulated as a method that finds 
the function Z = f(θ,d) such that the PDF in Z becomes 
independent of the parameter θ. 

 

• Example: Normal theory: Z = (X-µ)/σ. Confidence intervals can 
then be readily obtained from evaluating (or tabulating) the error 
function. 

 

 

  

Frequentist intervals 
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Frequentist intervals. 

• Otherwise: Neyman Construction. 

 

• Flip-flopping: observer decides after the 
observation which confidence interval to report  

effectively destroying coverage. 

 

• Unified confidence intervals based on the 
likelihood ratio (Feldman & Cousins 1998). No 
choice necessary, will provide upper limits or 
”measurements” depending on the outcome with 
coverage correct by construction. 

 

 

 



Likelihood intervals. 

• 68% confidence intervals: 

 

 

 

• Steps can be chosen for required confidence level 

 

• Works for non-Gaussian likelihoods (as long as 
transformable into a Gaussian) 

 

• Good coverage properties even for relatively 
small statistics. 
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CLs 

• Modified frequentist method to obtain upper 
limits. 

 

• CLs has been developed to avoid rejection of a 
signal hypothesis (too good upper limit) caused 
by a chance fluctuation of the background 
hypothesis. 

 

• Re-defined p-value for confidence interval: 

 

 

 

• causes over-coverage in general. 
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Nuisance parameters: 

• Nuisance parameters: parameters that affect the 
result but are not of prime interest: 

 

• Generically two ways to ”project” on to the 
subspace of parameters of interest: 
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Nuisance parameters 

• Profile likelihood is the method adopted by LHC, 
laid out and unified in Cowan+, and now 
predominantly used in particle and astroparticle 
physics 

  

• has in general excellent coverage properties (see 
e.g. Rolke+) 
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Marginalization 

• Used both in posterior inference (fully Bayesian) 

 

• Hybrid Bayesian (Highland&Cousins, Conrad+) 

 

• In hybrid bayesian  over-coverage in general 

 

• In fully Bayesian  don’t care (except for 

diagnostics potentially). 
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Complex likelihoods (e.g. Supersymmetry) 

• Bayesian methods have been used as MCMC 
provides sampling of posterior 

 

• Generically, strong prior dependence, bad 
coverage properties  potentially overcome by 

better data, but not clear to my mind. 
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What method to use? 

• Most commonly, you will use the maxmimum likelihood estimator 
in your problem. The simplest (and has been shown recently, also 
very well performing) method is then to derive the uncertainties 
from the likelihood function. However, in principle, the properties 
(coverage) would have to be proven on a case-by case basis, 

 

• The Neyman construction gives coverage per construction. 
However might be computationally much more cumbersome, 
especially in the case of many parameters. If you are in a low 
statistics regime, or have other reasons to believe the 

 

• Bayesian intervals might be useful if the experimental outcome of 
an experiment contradicts intuition. These intervals are simple to 
calculate. Problem here: prior dependence. This might also be a 
way around having to use asymptotic properties. 



EXERCISE APPENDIX: 
KOLMOGOROV SMIRNOV 

Interval estimation 



Goodness of fit for unbinned data 

• Binning data always leads to loss of information, 
so in general tests on unbinned data should be 
superior. 

• The most commonly used tests for unbinned data 
(that are distribution-free) are based on the 
order statistics. 

• Given N independent data points x1,……,xN of the 
random variable X, consider the ordered sample 
x(1) ≤ x(2) ….≤x(N). This is called the order statistics, 
with distribution function (empirical distribution 
function): 
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goodness of fit 

Example 

• Difference between 
two EDFs, used with 
different norms (for 
different tests) is 
now used as a test 
statistics 
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goodness of fit 

Kolmogorov-Smirnov test 

• Maximum deviation of the EDF from F(X) 
(expected distribution under H0).  
 

 

 

 

 

• For this test-statistics a null distribution can be 
found: 


